CHAPTER 2

THE SYNTAX AND SEMANTICS OF TWO
SIMPLE LANGUAGES

1. THE LANGUAGE L,

We begin by considering a very simple language, which anyone familiar with
symbolic logic will recognize as essentially the propositional calculus with
propositions analyzed into predicates and arguments. Truth-conditional
semantics was first developed in connection with logical languages, and it is
instructive to look at such cases to understand the motivations for certain
features that may appear peculiar in the context of natural languages.

In the logical tradition it is customary to specify the syntax of a language
not by a phrase-structure grammar but by a recursive definition of the well-
formed expressions of the language. This is done by giving first a list of basic
expressions divided into various categories. (These will correspond to the
terminal symbols and lexical categories of a phrase-structure grammar.) Then
a set of formation rules states how expressions of various categories are com-
bined into other more complex expressions. These rules apply recursively,
and each is of the following form: given expressions a, 8, . . . , n of categories
Ca, Cg, .. ., Cy, respectively, these expressions can be combined in a specific
way (stated by the rule) to yield an expression of category C.,. One notices
certain similarities here to the phrase-structure rules of a phrase-structure
grammar but certain differences as well. We will have more to say on this
point later, but let us first consider as a specific instance the syntax of our
language L.

1. Syntax of L,

A. The basic expressions of L, are of three syntacticcategories:

(2-1)  Category Basic Expressions
Names dnjm
One-place predicates M, B
Two-place predicates K, L

B. The formation rules are of two kinds. First, there are rules for combining
predicates with an appropriate number of names to produce atomic sentences
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(sentences having no other sentences as parts). These are rules 1. and 2. below.
Second, there are rules (3.-7. below) which form a sentence out of one or
more other sentences.

(2-2) 1. If § is a one-place predicate and a is a name, then §(a) is a
sentence.
2. If v is a two-place predicate and a and § are names, then
v(a, B) is a sentence.
If ¢ is a sentence, then 1¢ is a sentence.
If ¢ and ¥ are sentences, then [¢ A Y] is a sentence.
If ¢ and Y are sentences, then [¢ v Y] is a sentence.
If ¢ and ¥ are sentences, then [¢ = Y] is a sentence.
If ¢ and Y are sentences, then [¢ « ] is a sentence.

NowneW

Note that in the statements of the foregoing rules we used the Greek letters
“a,”’ “B,” etc. to refer to expressions of L,. These symbols function in effect
as variables taking expressions of Ly as values, and it is important not to con-
fuse such symbols with symbols of the language itself. Here Lq is the object
language, the language under study. The rules in (2-2) are statements about
certain expressions of Lo and are couched in English (albeit of a somewhat
stilted, technical variety). Thus, English is the meta-language, the language
used in talking about the object language and “a,” *‘B,” etc. are meta-language
variables, or simply meta-variables. To help forestall possible confusion
between meta-variables and object language symbols, we will adopt hence-
forth the following notational convention:

(2-3) Notational Convention 1: Lower-ase letters of the Greek
alphabet are used only as meta-language variables, never as
symbols of an object language.

The rules in (2-2) constitute a recursive definition of the infinite set of
expressions of the category “‘sentence’ in Lo. Rules 1. and 2., together with
(2-1), comprise the base of the recursive definition, and rules 3.-7. together
make up the recursion. It is assumed in all such statements of formation rules
that nothing else is a member of any syntactic category except what qualifies
by virtue of the rules; i.e., the exclusion clause is assumed whether explicitly
stated or not.

By rule 1. we can form, for example, the atomic sentence M(d) from the
one-place predicate M and the name d. Similarly, rule 2. allows the formation
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of the atomic sentence K(d, j) from the two-place predicate K and the names
d and j. Now given that M(d) and K(d, j) are sentences, we can form by rule
3. the (non-atomic) sentences " M(d) and 7 K (d, ). The reader can verify on
the basis of the formation rules given that each of the following is a well-
formed sentence of L,:

24) 1. [K@d,j)AM(@)]
2. [M(d) v B(@m)]
3. [L(n,j)- [B(d)vK(m, m)]]
4. [ B(n) T M(n)]

One should note carefully that the parentheses, comma, and square
brackets are symbols of L, just as K, d, etc. are. They are not basic
expressions, however, and are not assigned membership in any syntactic
category. Such symbols are called syncategorematic because they are intro-
duced into expressions by the formation rules along with the regular, or
categorematic, symbols. Besides the symbols that might be regarded as
punctuation, other syncategorematic symbols of L, are the connectives
“A,T VT ) 4 and e

2. Semantics of L

Our strategy for determining the semantic values of the sentences and other
constituents of Ly, for connecting each well-formed expressior: of L, with
some ‘‘object in the world,” will follow the Principle of Compositionality
mentioned in Chapter 1. We first assume that a semantic value has been
given to each basic expression (somehow or other — the way in which this
is done does not concern us at the moment). We then state semantic rules,
whose job it is to determine the semantic value of cach larger constituent
in terms of the semantic values of its components. In other words, semantic
values are assigned to successively more inclusive constituents of the sentence
until finally the semantic value of the entire sentence has been determined.

With respect to sentence (2-4) 2., for example, we would assume the
semantic values for the basic expressions “M,” *“d,” “B,” and “m” to be
antecedently given. Then by means of the semantic rules, we would determine
the semantic values of the constituents “M(d),” “B(m),” “M(d)v B(m),”’
and finally of the whole sentence. Since the semantic rules will be designed in
such a way that they retrace or “track” the syntactic structure, every well-
formed sentence of L, as well as every well-formed constituent of such a
sentence will be assigned a semantic value by this procedure.
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What sorts of things are the semantic values to be? First, it is a basic
assumption of the truth-conditional approach that semantic values come in
various varieties or types, and that in general (but not always, as we shall see
later), members of different syntactic categories take on semantic values of
different types. Different theories of truth-conditional semantics will, how-
ever, make different assumptions about the exact range of possible semantic
values and about the pairing of syntactic categories with types of values.

For the moment, we will assume a rather elementary version of the theory.
In this system, names take as their semantic values just what our common
sense would probably tell us they ought to take, namely, individuals. We are
not obliged to say at this point just what counts as an individual; we would
certainly want to include human beings, animals, and other countable physical
objects, but we need not take a stand on such philosophically controversial
problems as whether events, propositions, actions, etc. are to count. For
illustrative purposes, let us assume that the universe consists of just four
individuals, namely, Richard Nixon, Noam Chomsky, John Mitchell and
Muhammad Ali. To each name in L, we might then assign one of these
individuals as its semantic value, as in the following table:

(2-5) Name Semantic Value
d Richard Nixon
n Noam Chomsky
J John Mitchell
m Muhammad Ali

Other pairings would have served as well, but let us adopt this one now for
purposes of illustration. We will in general insist that each basic expression be
assigned a single semantic value, so that cases of lexical ambiguity will be
treated as separate lexical items that happen to have the same pronunciation.
We will not require, however, that every individual in the domain of discourse
be assigned to a name as its semantic value. Thus, there could be individuals
for whom our language had no names. It is also allowed for one and the same
individual to have two or more names (just as ‘“‘Samuel Clemens’’ and “Mark
Twain’’ are names of the same person). In short, what we want is a function,
in the mathematical sense, from the names of the language into the set of
individuals in the domain of discourse; more specifically, it must be a roral
function, since no names are to be left unpaired. The table in (2-5) is intended
to represent one such total function.

PROBLEM (2-1). Given a language with n distinct names and a universe of
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discourse consisting of m distinct individuals, how many different assignments
of semantic values to names are possible?

It is important to recognize that there are two very different sorts of
entities involved in (2-5). In the left-hand column there are linguistic entities
- lexical items of a particular syntactic category in a particular language. In
the right-hand column we find not linguistic entities but “real-world” entities,
in this case, real people. There would be little chance of confusion on this
matter were it not for the fact that we are communicating with the reader by
means of the printed page, and so we could not put in (2-5) the people them-
selves but rather have let them be represented by their conventional names in
English. The reader is encouraged to mentally transcend this limitation and to
imagine that in (2-5) we have persuaded Messrs. Nixon, Mitchell, Chomsky
and Ali to participate in a rableau vivant in which they wear their respective
names from L, as, say, signs hanging around their necks. In this way, the
reader will not be tempted to think that the semantic value of d is ‘‘Richard
Nixon” (i.e., Mr. Nixon’s name); rather, it is Richard Nixon himself, the
ex-President of the United States of America, the man who said “I am not a
crook,” etc. The point is worth belaboring since it is central to the program
of truth conditional semantics, as we said in the preceding chapter, that a
connection is made between language and extra-linguistic reality, i.e. “the
world.” (The sanitizing quotes here are prompted by the fact that we will
eventually want to consider not only the world in which we live as it actually
is but also the world as it was, as it will be, as it might have been, etc. i.e.,
other “possible worlds’).

What sort of semantic value should the one-place predicates B and M have?
What “objects in the world”’ could we connect these predicates with? For
purposes of Lq, we will let this semantic value be a set of individuals - intuit-
ively, the set of individuals of which the predicate is true. Qur semantics is
said to be extensional because our semantic treatment of a predicate here
involves only its “extension.” Thus, we will let the semantic value of B be the
set of all individuals that are bald and the semantic value of M be the set of all
individuals who have moustaches. We might digress at this point to admit that
from the point of view of a speaker’s understanding of the meanings of pred-
icates, it is not very natural to identify our understanding of, say, “is bald”
with the set of bald persons; there are, after all, bald individuals we have
never met. Instead, what seems more relevant is our grasp of a certain attri-
bute or characteristic that all these individuals share that distinguishes them
from others. (For this reason we have avoided use of the term ‘“meaning”
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here and have employed the more neutral term ‘“semantic value.”’) But one
implicit effect of the use of “is bald’’ by all speakers of English is potentially
to single out this set of persons, however this is done mentally by individual
speakers, and this set will serve our present purposes quite well. Our treat-
ment of the semantic valucs of predicates in later languages will be more com-
plex and will more closely approximate our intuitive understanding of their
“meaning.”

We can now see how the truth value of a sentence formed from a name
and a one-place predicate is to be determined. A sentence like M(j) should be
true if and only if the individual denoted by the name j (John Mitchell in this
case) is a member of the set of individuals denoted by the predicate M (the
set of individuals that have moustaches). Since we will need to use the phrase
“the semantic value of a’’ often, we will introduce a special notation for it:

(2-6) Notational Convention 2: For any expression a, we use [[a]
to indicate the semantic value of a.

Thus our semantic rule for sentences formed from a one-place predicate and a
name will say that if 6 is a one-place predicate and « is a name, then §(a) is
true iff (if and only if) [a] € [6].

For two-place predicates, we will adopt an approach that parallels that
used for one-place predicates: we let the semantic value of a two-place pre-
dicate be a set of pairs of individuals; intuitively, these are the pairs of which
the predicate is true when the first argument names the first individual and
the second argument names the second individual. In particular, we will let
[ K] be the set of pairs in which the first knows the second, and [ L ] will be
the set of pairs in which the first loves the second. For example, ( Richard
Nixon, John Mitchell) is a member of [ K ], but to the extent of our knowl-
edge, {Muhammad Ali, Noam Chomsky) is not a member of [K]. Our
semantic rule for sentences formed from a two-place predicate and two
names will then state that if v is a two-place predicate and a and g are names,
then y(a, B) is true iff ([a], [B]) € [y] (that is, if the ordered pair consist-
ing of the denotations of the two names, in that order, is a member of the set
of pairs denoted by the predicate). By this rule, for example, K(d, j) is true,
because ([d], [/P € [K], in other words, because (Richard Nixon, John
Mitchell) € {{x, y)| x knows y}. Note that we want the semantic values of
two-place predicates to be sets of ordered pairs (and not merely sets of two-
member sets) in order to allow for the possibility that {a, §) can be true while
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v(B, a) is false (or vice versa), for some two-place predicate y and names «a
and g.

Before going on to a formal statement of the semantic rule or rules
involved, we must pause to consider our obligations to the Principle of Com-
positionality. We want our semantic rules to be such that the semantic value
of a syntactically complex expression is always a function of the semantic
values of its syntactic components and of their “‘mode of combination,” i.e.,
the way the parts are combined to form the expression in question. As we
said in Chapter 1, in order to ensure that the semantic component adheres to
the Principle of Compositionality, it is common practice to construct the
semantic rules so that they are in one-to-one correspondence with the syn-
tactic rules. For example, 7[M(j) A K(/, d)] is generated by the grammar
of L through the application of the four syntactic rules B1, B2, B4 and B3
of (2—2). Therefore, four of the semantic rules we formulate will correspond
to these syntactic rules. The semantic rules will, in effect, “compute” the
semantic values of successively larger parts of this sentence, starting with the
semantic values of the basic expressions.

The semantic rules for L, that remain to be formulated are therefore those
that will correspond to the syntactic rules producing "¢, [¢ A V], [¢# vV VI,
[¢ = V], and [ ¢ « ] from sentences ¢ and Y. These will be designed to have
the effect of the familiar truth tables for these connectives and thus require
little comment. Though here formulated in our English metalanguage in a
way that requires our understanding of English “‘and,” *‘or,” “not,” etc., we
will see shortly that these semantic rules could, if desired, be given a
mechanical formulation that avoids these metalanguage words. We now state
the complete semantic system for Ly: the assignment of semantic values to
basic expressions, and the rules that recursively determine the semantic value
for any sentence of L, in terms of the basic expressions and syntactic rules
from which it is formed.

(2-7) A. Basic Expressions:

[d] = Richard Nixon [/} = John Mitchell
[n]) = Noam Chomsky [m] = Muhammad Ali
‘ [M] = the set of all living people with moustaches

[B} = the set of all living people who are bald

[K] = the set of all pairs of living people such that the
first knows the second.

IL] = the set of all pairs of living people such that the
first loves the second.
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(2-8) B. Semantic Rules:
1. If 8 is a one-place predicate and a is a name, then &(a)
is true iff [a] € [8].
2. If vy is a two-place predicate and a and B are names,
then y(a, ) is true iff ([a], [B)) € (7).
If ¢ is a sentence, then ¢ is true iff ¢ is not true.
4. If ¢ and Y are sentences, then [¢ A V] is true iff both
¢ and Y are true.
5. If ¢ and ¥ are sentences, then [¢ v ] is true iff either
¢ or Y is true.
6. If ¢ and  are sentences, then [¢ = V] is true iff either
¢ is false or V¥ is true.
7. If ¢ and y are sentences, then [¢ < Y] is true iff either
¢ and ¥ are both true or else ¢ and Y are both false.

had

Given these semantic rules and the assignments of semantic values to basic
expressions, one can, in principle, determine the truth values of all sentences
of Lo. We say “in principle” because values are assigned to the predicates
M, B, K, and L in terms of what is in fact the case in the world at present.
Anyone’s knowledge of this factual situation may be limited, but the func-
tions which are the semantic values are well-defined nonetheless (if we ignore
for the sake of the example any problems connected with the assumed pre-
ciseness of the predicates; i.e., we assume that we can determine for any
living individuals whether they are bald or not, have moustaches or not, etc.).
Thus, at the time of writing, B(n) is false, since Noam Chomsky is not bald,
but B(j) is true, since John Mitchell is bald. Given this, it follows that 7 B(;)
is false (since B(j) is true), and —B(n) is true (since B(n) is false). K(d, ) is
true, since Richard Nixon knows John Mitchell, and thus [B(j)A K(d,j)] is
true, both conjuncts being true. K(n, m), we suspect, is false, since we doubt
that Noam Chomsky knows Muhammad Ali.

PROBLEM (2-2). Determine the truth values, insofar as your knowledge
allows you to do so, of each of the sentences of L, given in (2-4).

This system of syntactic and semantic rules thus specifies an infinite set of
sentences of L, and assigns to each a semantic value, either rrue or false (and,
as it happens, the assignments are unique since L, contains no “syntactically
ambiguous’’ sentences). But in the preceding chapter we promised a system
that would supply for each sentence of a language its truth conditions -
necessary and sufficient conditions for the truth of that sentence - and it
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appears that we have delivered only a truth value. Where is the rest? The
answer is that the foregoing semantic rules do in fact give the truth conditions
for sentences of Lo, and they do so, as it were, while determining truth values.
Consider an atomic sentence of Lo, for example, M(n). Let us ask under what
circumstances it would be true. This information is contained in semantic rule
B.1, where we learn that for any sentence of the form §(a), it will be true just
in case [a]) € [8]. That is, for the case of sentence M(n), it will be true just in
case [n] € [M], which, given the assumed semantic values for M and n,
amounts to saying that Noam Chomsky is a member of the set of all living
people with moustaches. In summary, M(n) is true iff Noam Chomsky has a
moustache.

If we examine any sentence of Lo of the form [¢ A Y] and ask for its
truth conditions, we find that they are given by rule B.4. [M(n) A B(d)] is
true, for example, just in case both M(n) is true and B(d) is true. But we
know under what conditions each of these is true by virtue of rule B.1, so we
therefore know the truth conditions of M(n)A B(d). Similar reasoning
applies to any sentence of Ly, and so we have in fact delivered what we
promised. ’

A further, related point may perhaps make this clearer yet. As we will ex-
plain in section IV, a quite different status is possessed by the assignment of
semantic values to basic expressions in (2-7) and by the semantic rules
in (2-8). Precisely what semantic values are assigned in (2-7) depends crucially
on certain facts about the world, e.g., on just who is bald, who in fact knows
whom, etc. If these facts were different than they actually are, different
semantic values would have to be assigned to “B”, “K”, etc. But regardless
of how these facts might change, the semantic rules in (2-8) would stay the
same. These rules are an integral part of the language L, as opposed to the
world this language might be used to talk about. They state relationships
between the semantic value of one expression and the semantic values
associated with other, syntactically related expressions — relationships which
must hold just by virtue of what language L, is, irrespective of precisely what
objects in the world turn out to be connected with Ly’s expressions. The
game plan of model theory is to describe the semantics of a language by
characterizing these necessary relationships between associated objects,
capitalizing on the fact that the relationships do not change depending on
contingent facts about the condition of things in the world.

We have given the syntactic and semantic rules for Ly in the general form
usually adopted for formal languages by logicians. But in fact many of the
features of our statements of these rules were essentially abritrary, as we



L, AND L g 23

could have defined a language with the same expressive capability as Ly in
somewhat different ways while still adhering to the Principle of Composition-
ality and the goal of a truth-conditional semantics. For example, while we
used recursive definitions to specify the syntax of Lo, we could instead have
used a phrase-structure grammar of the sort linguists are accustomed to, and
instead of introducing the connectives A, v, =, etc., syncategorematically, we
could have treated them as basic expressions in a category of sentence con-
junctions. Similarly, several aspects of our semantics could have received
alternative but equivalent formulations. In order to better illustrate which
features of L, are crucial to our program and which are matters of con-
venience and, at the same time, to show how this program can be applied
to a language that resembles English to a much greater degree than Lo, we
now turn to an English-like but semantically similar language which we will
call LOE-

II. THE LANGUAGE Log

1. Syntax of Lo

The syntax of Log is given by the following context-free phrase-structure
grammar:!

(2-9) S Conj S Conj - and, or
S—>{ Negs$ } N = Sadie, Liz, Hank
N VP V; = snores, sleeps, is-boring
IR { V } V, = loves, hates, is-taller-than
Ve N Neg = it-is-not-the-case-that

By trying a few derivations with this grammar the reader will see that it
generates a small fragment of quasi-English. For example, the following are
grammatical according to (2-9):

(2-10) 1. Sadie snores.

2. Liz sleeps.

3. [It-is-not-the-case-that Hank snores.

4. Sadie sleeps or Liz is-boring and Hank snores.
5.

It-is-not-the-case-that it-is-not-the-case-that Sadie sleeps.

One should note that the hyphenated items is-boring, is-taller-than, and
it-is-not-the-case-that are understood as unanalyzable terminal symbols of
Log just as Liz and snores are. This is merely a device to allow us to introduce
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a bit of variety into this rather limited language without having to deal with
certain syntactic complexities prematurely. We do not wish to suggest that
the corresponding expressions “is boring,” etc. should be treated this way in
a more complete and accurate grammar of English, and there is nothing essen-
tial to our semantic approach involved here.

Lok contains five lexical categories (those which are immediately rewritten
as terminal symbols), namely N, V;, V;, Neg, and Conj. For convenience, let
us call these by their traditional linguistic designations: proper nouns (or
names), intransitive verbs, transitive verbs, negation, and (co-ordinating) con-
junctions, respectively. The two remaining non-lexical categories are VP (for
verb phrase) and S (for sentence). We assume that the derivation of any
sentence of Log can be represented by a tree structure in the usual way
(described in Note 1), and given such a tree we will use the commonly
accepted terminology, saying, for example, that any string of terminal
symbols which is exhaustively dominated by a category stands in the “is a”
relation to that category. The sentence Hank snores and Liz is-taller-than
Sadie would thus be associated with the following tree structure according
to the grammar of (2-9):

(2-11) S
S S
/\ 72 /\VP
I /\
1|V V; Conj 1}/ Vi N
I
Hank sm;res arld Liz is-taller-than  Sadie

With respect to this tree, we can say that Hank stands in the “is a’’ relation to
N, or briefly, that Hank is an N. Similarly, is-taller-than Sadie is a VP, the
entire terminal string is an S, “snores and’’ is not a constituent at all, etc.

Although the grammar in (2-9) generates only a fragment of English (or
near-English), it is worth noting that it generates an infinite language - by
means of the recursive rules S - S Conj S and S > Neg S. Further, there are
sentences, in fact an infinite number of them, which have more than one
syntactic derivation. Sentence (2-10) 4. is one such.

PROBLEM (2-3). Construct all phrase-structure trees associated with the
sentences in (2-10). The fourth sentence should have two trees. Set your
results aside for use in Problem (2-8).
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PROBLEM (24). Are there any syntactically ambiguous sentences (those
having distinct tree structures) in Log which do not involve an application of
the phrase-structure rule S + S Conj S?

2. Semantics of Log

Even though we have used a phrase-structure grammar to formulate the syn-
tax of Log we will still adopt the Principle of Compositionality in our inter-
pretation of Log in much the same way as with Lo. We will assign a semantic
value to each lexical item as we did to each basic expression in Ly, and for
each syntactic constituent there will be a rule for determining its semantic
value from the semantic value(s) of its sub-constituents. Though we may
think of the phrase-structure rules as defining a tree ‘‘from top to bottom,”
our semantic rules will be formulated as proceeding from the bottom of the
tree (its terminal nodes) to the top. Nevertheless, there will be a semantic rule
corresponding to each phrase structure rule in the semantics of Log, just as
there was a one-to-one correspondence between syntactic and semantic rules
in Lo. More formally, for each phrase structure rule a—=> g, 8, ... 8,, there
will be a semantic rule for determining the semantic value of the constituent
labelled a in a tree in terms of the semantic values of the constituents 8,, £,
.. . B, which the node a dominates.

Purely for convenience, we will make a slight change in the way the
semantic values for sentences are stated. Instead of simply classifying sen-
tences into the (meta-language) categories “true’ and “‘false’ as we did for
L,, we will select two objects to represent truth and falsity, respectively, and
assign one of these to each sentence as its semantic value. Following common
practice among mathematical logicians (including Montague), we will select
the number 1 to indicate truth and O to indicate falsity. The intuitive signifi-
cance of these semantic values is the same as before: sentences assigned 1 are
to be thought of as those that correspond to some (real or hypothetical)
state-of-affairs, while sentences assigned 0 are those that don’t. Thus our
choice of these two objects has no particular ontological significance; we
could just as well have selected the Empire State Building for the value
assigned to true sentences and the planet Venus for false ones.

Turning now to the lexical categories of Log, we will first assign values to
the names. As with L,, we will want names to denote individuals, so we may
assign the names Sadie, Liz and Hank values as in (2-12):
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(2-12) [Sadie] = Anwar Sadat
[Liz} = Queen Elizabeth II
[ Hank} = Henry Kissinger

We wish to give the semantic values of intransitive verbs, V;, the effect of
singling out a set of individuals, just as we did with the one-place predicates
of L. We will achieve this effect in a different way here, however.

Sets of individuals are in a one-to-one correspondence with functions that
map individuals to O or 1, as will emerge momentarily. It is very convenient
to follow Montague in the common mathematical practise of not distinguish-
ing between the two isomorphic sorts of object in cases like this, and to con-
sider an object sometimes as a set, sometimes as a certain kind of function.
For this reason we digress briefly to define the association which justifies this
identification.

If A is the set of individuals and § is any subset of A, we define a function
fs on the set A by letting

lifa€S
5@ = Voitags
for each a in A. This function is called the characteristic function of S (with
respect to A) and belongs to {0, 1}4, where X ¥ is in general the set of all
functions from Y into X. The characteristic function divides the domain 4 into
two parts, the subset mapped into 1 (namely S) and the complementary sub-
set, which is mapped into 0.

Two fundamental properties of sets guarantee that sets of individuals and
their characteristic functions are in a one-to-one correspondence. First, mem-
bership in a set S is a strictly yes-or-no matter, i.e., each particular individual
either does or else does not belong to S. Thus every set included in A is
characterized by some way of saying “true” or “false” to each individual.
Secondly, two sets are distinct if they differ in membership. Therefore, differ-
ent ways of saying “true” or “false” to individuals correspond to different
sets.

The semantic values of V;’s in Log will all be characteristic functions of
sets of individuals. Assuming for the sake of simplicity that the three
individuals mentioned in (2-12) are the only individuals in the world, we
might for example stipulate that the V; snores has as its semantic value the
following function:

(2-13) Anwar Sadat ]

[snores] = | Queen Elizabeth I — |
Henry Kissinger -0
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(Recall that a function is technically a set of ordered pairs: thus (2-13) is
simply a convenient graphic representation of the set {{ Anwar Sadat, 1),
(Queen Elizabeth I1, 1), (Henry Kissinger, 0)}). Note that this semantic
value is a set-theoretic construct made from individuals (NB: here, real
people!) and truth values. (In the extensional semantic theory we will be
constructing in this and the following two chapters, every kind of semantic
value will in fact be made out of these same basic ingredients — individuals
and truth values — by means of the combinatory apparatus of set theory.)

For the sake of completeness, let us assume that semantic values of the
remaining V;’s are as follows:

(2-14) [ Anwar Sadat — 1]
[sleeps) = Queen Elizabeth ll\

| Henry Kissinger

(2-15) [ Anwar Sadat

[is-boring] =| Queen Ehzabethy
0

| Henry Kissinger

-l

PROBLEM (2-5). Assuming that the world contains n individuals, how many
different semantic values for ¥;’s are possible?

Given now the semantic value for both the names and the intransitive
verbs of Log, what kind of semantic rule will be required to “compute” the
semantic value of a sentence of the form N + V;? It is clear that the simplest
rule will be: apply the function which is the semantic value of the V¥ to the
argument which is the semantic value of the N. The result will be the seman-
tic value (i.e. 1 or 0) of the sentence. For example, given that [Sadie] =
Anwar Sadat and that [snores] is the function in (2-13), the truth value of
the sentence Sadie snores will be the value of the function at the argument
Anwar Sadat, i.e., 1 (true). In the usual notation for functions,in which the
argument is written to the right of the name of the function and enclosed in
parentheses, the foregoing could be expressed as:

(2-16) [snores] ([ Sadie]) =

In the same way we could determine that given our assumed semantic values,
[ Hank sleeps] = 0 and [ Liz is-boring] = 1.

In Lo we let one-place predicates denote sets and specified that a sentence
formed from such a predicate plus a name was to count as true just in case
the individual denoted by the name belonged to the set denoted by the
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predicate. The function given in (2-13) as the semantic value of snores is the
characteristic function of the set { Anwar Sadat, Queen Elizabeth II}, and
applying such a function to an individual, as we did in (2-16), results in the
value 1 (truth) just in case that individual belongs to the set characterized by
this function, false just in case that individual does not belong to that set.
Thus, our semantic treatment of one-place predicates in Ly turns out to be
equivalent to that of sentences with V;’s in Log. In many approaches to truth
conditional semantics, sets rather than characteristic functions are assigned as
semantic values of certain syntactic categories. As we see, nothing crucial is
involved in this choice, since sets and characteristic functions are essentially
two ways of looking at what amounts to the same thing. It may be more
elegant to formalize semantic values as characteristic functions rather than
sets in that the semantic rules which produce a truth value as output are
assimilated to other rules which work by applying a function to an argument.
Montague preferred the elegance and uniformity of stating semantic rules as
rules of functional application wherever possible, and thus we will adhere to
his practice of using characteristic functions rather than sets in the formal
definitions. But, again following Montague’s practice, we will often talk in
terms of sets rather than functions when it is intuitively more congenial to do
so. The reader should be prepared to make the necessary conversion without
being explicitly directed to do so in each case.

As a further preliminary to stating the semantic rules for Log, we note
again that sentences like Sadie sleeps or Liz is-boring and Hank snores are
derivable in nonequivalent ways. It is intuitively clear that the semantic value
such a sentence has may depend on how it is derived, in particular on the
phrase-structure tree associated with its derivation, so that it will be semanti-
cally as well as syntactically ambiguous. For this reason, we shall not assign
semantic values directly to sentences in an ambiguous language like Lo g, but
in the first instance to phrase-structure trees. Otherwise we could not con-
tinue assigning a unique semantic value to each part of the language we
interpret. Sentences and other phrases naturally inherit the semantic values
assigned to their one or more tree structures.

Turning now to the semantic rules of Log, we will provide a semantic
rule for each syntactic rule used in producing sentences. In order to interpret
the structure (2-17) of the sentence Sadie snores, which will ultimately
involve applying the function [snores] to [ Sadie] , we need semantic rules
for the phrase-structure rules that introduce the intervening nodes N, ¥; and
VP.
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(2-17) S
;i

Sadie’ snores

Clearly the semantic value of the nodes labelled with the lexical categories
N and V¥, should just be the semantic values of the respective lexical items
which they immediately dominate. Thus, the semantic rule corresponding to
the syntactic rule N = Sadie should be something like the following:

(2-18) Ifa is]|VandBis Sadie, then [a] = [B].
B

The semantic rule corresponding to V; = snores would be similar, and in fact
we could abbreviate all such semantic rules by means of the following rule
schema:

(2-19) If aisy,where vy isany lexical category and § is any lexical item,
I

B
and vy — g is a syntactic rule, then [a] = [B].

For the grammar of Lyg, this schema is instantiated by twelve semantic rules,
each one corresponding to a lexical rule of the grammar.

Corresponding to the nonlexical syntactic rule VP —» V;, we will want a
semantic rule which attaches the semantic value of the V; node to the VP
node. Here and below, we use triangles (in a way familiar to linguists) as
meta-variables over trees; e.g., V; stands for any tree rooted in the node V;.

(2-:20) Ifais VIPandBis V;, then [a] = [B].
B

Finally, we come to the more interesting semantic rule which corresponds
to the branching syntactic rule S > N VP:

(2-21) IfaisN andBis VP, and if vy is’ /S\ , then [y] = [B])([a]).

A o« B

PROBLEM (2-6). Determine by means of the semantic rules just given the
semantic values of the phrase-structure trees of Hank sleeps and Liz is-boring.
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As we emphasized in our discussion of the semantics of L, it is absolutely
essential to keep in mind the distinctions among three different kinds of
things: (1) expressions in the object language (e.g. Sadie, is-boring, and the
tree in (2-17)), (2) entities serving as semantic values of expressions in the
object language (e.g. Anwar Sadat and the functions in (2-13), and (3) expres-
sions in the meta-language which are used in talking about the entities in (1)
and (2) (e.g. a and the other expressions in (2-21)). In light of this discussion,
the reader should now consider the following question: according to the
semantic values given for Log so far and the semantic rules given for Lqg,
what is the truth value of Henry Kissinger sleeps? Anyone who answers “0”’
or “false’” has fallen into a trap. Henry Kissinger slecps is not a sentence of
Lok since Henry Kissinger is not in its terminal vocabulary. Thus, not being a
sentence of the object language, it is not assigned any semantic value by what
has been given so far. Of course ‘“Henry Kissinger sleeps” is a sentence of
English, and in a semantics of that language we would want to be sure that
some truth value is assigned to it.

Let us now ask what sort of values the V;’s should have. Semantically they
seem to express relations between individuals. According to the grammar, a
V, followed by an N forms a VP. Is this consistent with the need for a VP to
have as its semantic value a function from individuals to truth values (so that
semantic rule (2-21) will function correctly)? The answer is “Yes” because we
can take advantage of the isomorphism between relations and functions of a
certain type. We need the semantic value of a V, to be something that maps
the semantic value of an N (i.e., an individual) into the semantic value of a VP
(i.e., a function from individuals to truth values). Thus, we take the value of
a V; to be a function which yields other functions as its “outputs’. Its
domain will be the set of individuals, and its co-domain (i.e., set within which
its “‘outputs” must lie) will be the set of all functions from individuals to
truth values. For example, the ¥, “loves’” might have the following semantic
value:
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222) T " Anwar Sadat 17

— 1
Queen Elizabeth I ———~
| Henry Kissinger /0 ]

/ " Anwar Sadat { T
Anwar Sadat Queen Elizabeth 11
. . 0
| Henry Kissinger

.

- -
Anwar Sadat ——~— 1
Queen Elizabeth II

| Henry Kissinger 740

[ Anwar Sadat

—1]
Queen Elizabeth 11 Queen Elizabeth II /0
| Henry Kissinger — |

[ Anwar Sadat 1 ]
Queen ElizabM 0
| Henry Kissinger

-

[ Anwar Sadat 1 ]
Queen ElizabM

| Henry Kissinger — 0

Henry Kissinger

-

[ Anwar Sadat — 1
Queen Elizabeth II—___ 0

| Henry Kissinger —

[ Anwar Sadat \ ]
Queen Elizabeth Il ——— 0 J

| Henry Kissinger — |

L
(In this diagram we have listed every characteristic function in the co-domain,
including those that do not lie in the range of function (2-22).)

We now state the semantic rule corresponding to the syntactic rule
VP—> V,N:

(2-23) IfaisViandBisN,andif yis VP ,then [y]is [a}(I[BD).

VAN

To illustrate, the grammar associates with the VP “loves Hank’’ the follow-
ing tree structure:
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2-24 VP
ORI S
o

loves Hank

Given that [ Hank] = Henry Kissinger and that [loves] is the function given
in (2-22), the semantic rule schema (2-19) will assign the corresponding
semantic values to the trees rooted by ¥, and N. Then, by semantic rule

(2-23) we determine that the semantic value of the VP tree, i.e. of the verb
phrase loves Hank, is:

(2-25) | Anwar Sadat — .
Queen Elizabethll7< 0
Henry Kissinger
since this is the value of function (2-22) at the argument Henry Kissinger.
Note that the semantic value of the VP loves Hank is, as it was designed to be,
a function from individuals to truth values.

The reader should now be in a position to determine that the truth value
that the sentence Liz loves Hank inherits from its tree structure is 0, accord-
ing to our assumptions about [ Liz], [ Hank], [[loves], and the semantic rules.

(Recall that in L,, two-place predicates denoted sets of ordered pairs of
individuals. In fact, we will be able to show that by assigning V;’s a denota-
tion like that in (2-22) we are giving a semantic treatment that is essentially
equivalent to that in Ly; we will explain precisely why this is so on pp. 38-39,
when we compare Lq and L,k in detail.)

Returning to the specification of semantic values for lexical items of Loyg,

let us assume that hates and is-taller-than have the following values. (In order
to save space, we will not list the possible but unused values as we did in

(2-22).)
.

(2-26) [ Anwar Sadat i
A . . \

nwar Sadat Queen E!nz?beth N—— 0
| Henry Kissinger ——

™

-

[ Anwar Sadat —_— ]
[hates] = | Queen Elizabeth Il —=| Queen Elizabethll7<0
| Henry Kissinger ]

[ Anwar Sadat a
Henry Kissinger ———| Queen ElizabM 0

| Henry Kissinger ——
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(2-27)
" Anwar Sadat ]

Anwar Sadat ———| Queen Elizab% (1)

| Henry Kissinger

E

[ Anwar Sadat
[is-taller-than] = | Queen Elizabeth II—| Queen Elizabm (l)
| Henry Kissinger ——

[ Anwar Sadat — ]
Henry Kissinger — | Queen Elizabeth I —

| Henry Kissinger — 0_ 1

PROBLEM (2-7). Given our assumed universe consisting of three individuals,
how many distinct semantic values are possible for a V,? How many are
possible given a universe of n individuals?

The remaining lexical items are the negation operator ir-is-not-the-case-
that and the two co-ordinating conjunctions and and or. We will assume that
these have semantic values corresponding to the logical connectives “—,”

“A,”’ and “v” as defined by the customary truth tables:
(228) p | ~p (229) p 4§ pnrq
1 ” 0 11 1
0 1 1 0 0
0 1 0
0O O 0
(230) p ¢ pvq
1 1 1
1 0 1
0 1 1
0O 0 0

Syntactically, it-is-not-the-case-that combines with a sentence to form
another sentence. Therefore, given our ‘‘functional” approach to the semantics
of Log we may treat it as a function mapping a truth value into a truth value,
and this is in fact just what the truth table in (2-28) represents. Written in our
diagrammatic notation it would appear as in (2-31):
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(2:31) [(1):(1)]

This, then, is the semantic value we assign to it-is-not-the-case-that, and the
semantic rule in which it figures is as follows:

(2-32) IfaisNegand ¢isS, andif yis S ,then[¢¥]is [a)([o]).

A A a/ \¢

The logical connectives “A’’ and ‘“v’’ are two-place connectives forming a
proposition from a pair of propositions. The conjunctions and and or similarly
form one sentence from two, and the corresponding semantic operation
ought therefore to take a pair of truth values and give a single truth value as a
result. Accordingly, the semantic values assigned to and and or are the follow-
ing functions:

(2:33) (1,1)
_ <1,o>\1
land] =
(0, 1) 0
(0, 0)

(2:34)

Only one semantic rule is required, of course, corresponding to the syntactic
rule S+ S Conj S.

(2-35) IfaisConj,¢isS, and Y is S, and if w is S , then [w] is

A A A ¢/ c\x\lli

[«)Ted, [¥ D).

This completes the inventory of assumed semantic values for the terminal
symbols of Log and of the semantic rules. Given these, the reader should now
be able to determine the semantic value of any well-formed syntactic con-
stituent of Lo, and, in particular, of any sentence of Log.
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PROBLEM (2-8). Determine the truth value assigned to each of the phrase-
structure trees constructed in Problem (2-3), under the assumed assignments
of semantic values to terminal symbols of Log. The fourth sentence in (2-10)
would have posed a problem if we had attempted to assign semantic values
to terminal strings rather than trees or labelled bracketings. Why? Why could
we assign semantic values directly to terminal strings if we were dealing with a
syntactically unambiguous language?

PROBLEM (2-9). Suppose new Conj’s if-and-only-if and only-if were added
to Log with semantic values appropriate to the logical connectives “<’ (the
biconditional) and “~>” (the material cenditional), respectively. Express their
semantic values as functions of the sort given in (2-33) and (2-34). What
semantic rules need to be added to accommodate these new Conj’s?

3. Alternative Formulations of Log and L,

The syntax and semantics of the two languages we have just described are
similar in the overall effect of their semantic interpretations but differ in a
number of details. In this section we digress to consider several ‘“inter-
mediate” languages borrowing various syntactic and semantic features of one
or the other language. Our purposes here are to help us see what is essential to
the truth conditional method and what is a matter of convenience or choice.
We show, for example, that it is unimportant to our semantic method that
Log is “English-like”” and is defined syntactically by a phrase-structure
grammar, while L, has neither of these properties, and we likewise show that
it does not matter that two-place predicates were assigned relations as seman-
tic values in Ly while transitive verbs were assigned “function-valued” func-
tions in Log. (Readers who already perceive these differences as inconsequen-
tial and do not desire additional practice in formulating languages of this sort
may wish to skip directly to section III, p. 41.) The differences between the
two languages may be summarized as follows:

1. While the basic expressions of L, look like those of the formal
languages found in logic textbooks, as does the ordering of these
in formulas, the lexical items of Log are deliberately designed to
resemble English, and the word order in Lyg is much like that of
English sentences.

2. We used recursive definitions to specify the syntax of L,, but we
used a context-free phrase structure grammar to specify that of
Log.
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3. Our semantic rules for L, classified sentences as ‘‘true’’ or “false”
in the meta-language, while those of Log simply assigned 1 or O as
the semantic value of a sentence.

4. The semantic values of one-place predicates were sets in Ly, but
the semantic values of V;’s were characteristic functions of sets in
Log.

5. The semantic values of two-place predicates were sets of pairs in

Lo, but the semantic values of ¥,’s in Log were functions from
individuals to the kind of semantic values assigned to V’s.

6. The logical symbols 0, A, v, =, and < were treated syncategore-
matically in L, but the corresponding lexical items it-is-not-the-
case-that, and, etc., in Log were introduced as members of the
category Neg or Conj, and their semantic values were therefore
defined as functions on truth values (or pairs of them), indepen-
dently of the semantic rules corresponding to S > Neg S and
S=>SConjS. .

However, these six characteristics are not in any essential way tied to the
differences between natural languages and the formal languages of logicians,
but rather are independent and somewhat arbitrary choices which we made
for convenience (and for expository purposes). We could in fact alter the
syntax or semantics of Ly or Log with respect to almost any one of these
characteristics while keeping the other five the same, as the reader can now
assist us in demonstrating.

PROBLEM (2-10). Reformulate the syntax of Loz as a set of recursive
definitions. In this formulation the rules will produce only sentences of
English (i.e. strings of words), not labelled bracketings or trees.

PROBLEM (2-11). Can the syntax of Log also be formulated as recursive
definitions in such a way as to produce labelled bracketings for sentences
(e.g. “[s[~nSadien] [ve[v,snoresy ]vrls]” instead of Sadie snores)? If so,
write a couple of rules of Lyg to illustrate how this is done.

The choice of sets versus characteristic functions for the semantic values
of V;’s is likewise rather arbitrary, but does relate to the semantic rule (2-21).
If we had assigned as the values of snores, sleeps, and is-boring the respective
sets of which (2-13), (2-14) and (2-15) are the characteristic functions, then
semantic rule (2-21) would have to be stated as follows:
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(2-36) IfaisNandBis VP,andifyis S then [y] = 1iff [a] € [B],

A A AN

and is 0 otherwise.

Note that the functions given in (2-22), (2-26), and (2-27) as the semantic
values of the V,’s are not characteristic functionsinasmuch as their co-domains
are not the set {1, 0} (or any other set of two elements, one of which is
specified as a ‘“‘marked” or *distinguished’’ element). Rather, the values of
these functions are themselves characteristic functions. If these values were
reformulated as sets, in keeping with the modification (2-36) above, (2-22),
for example, should be rewritten as:

(2-37)

Anwar Sadat —— {Anwar Sadat, Queen Elizabeth II, Henry Kissinger}
Queen Elizabeth II—={Queen Elizabeth II}

Henry Kissinger —— { Anwar Sadat, Henry Kissinger}

In this representation it is perhaps somewhat easier to grasp the import of
the semantic value assigned to loves. Recall that the argument of (2-37) is the
individual named by the N which is the direct object of loves. That is, if the
N is Hank, then since [ Hank] = Henry Kissinger, we take the value of (2-37)
at the argument “Henry Kissinger” and find that it is the set {Anwar Sadat,
Henry Kissinger}. This, then, is the set of individuals who “love Hank.”
(Compare this set with the characteristic function in (2-25)). Similarly, it is
easy to see from (2-37) that the set of those who “love Sadie” is the entire
domain of discourse and that the set of those who ‘“love Liz” is just {Queen
Elizabeth II}. Given this modification, only one more step is needed in order
to think of a sentence N+ V, + N in Lo as expressing the proposition that
two individuals named by the subject and object nouns stand in the binary
relation named by the verb, just as we explicitly did with sentences like
L(j, m) in Ly. Given the universe we assumed for the semantics of Log, the
semantic value given to the V¥, loves would correspond to this set of ordered
pairs:

(2-38)

{¢ Anwar Sadat, Anwar Sadat ), (Queen Elizabeth II, Anwar Sadat ),
(Henry Kissinger, Anwar Sadat ), (Queen Elizabeth II, Queen Elizabeth II),
( Anwar Sadat, Henry Kissinger ), (Henry Kissinger, Henry Kissinger )}

While (2-38) represents exactly the same information as (2-22), notice that
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the function is ‘backward’ with respect to the ordered pairs. That is, an argu-
ment in (2-22) appears as a second coordinate of an ordered pair while
individuals appearing in the values of the function turn up as first coordi-
nates. Note, for example, that in (2-22) Anwar Sadat is mapped into a
function which in turn maps Queen Elizabeth Il into 1; thus, the ordered pair
(Queen Elizabeth II, Anwar Sadat ) appears in (2-38).

Representing the semantic value of a V; like loves as a set of ordered pairs
suggests that we might formulate the associated semantic rule in the following
way:

(2-39) Ifais V,,Bis N, and yis N, and if § is S , then [8] is 1 iff
A A A 7N
B a v
([[B],_ (v}’ € [}, and is O otherwise.

While this would give the correct semantic values for sentences of the form
N + V; + N, it runs afoul of the condition that the semantic rules should be
in one-to-one correspondence with the syntactic rules. Since the syntax does
not contain a rule of the form S > NV, N, there will be no semantic rule of
the form given in (2-39). It is nonetheless possible to adhere to our stipulation
of one semantic rule for one syntactic rule and still represent the semantic
value of a V; as a set of ordered pairs. We simply restate the semantic rule
corresponding to the syntactic rule VP - V, + N as follows:

(2-40) Ifais V,and Bis N, and if v is /VP\ then [y} is the set of all x
Y A

such that (x, [B]}) € [a].

PROBLEM (2-12). Verify that (2-40) yields the same semantic value for
loves Hank (where [loves] is as in (2-38)) as does (2-23) (where [loves] is as
in (2-22)).

It may be useful to many readers to consider in a bit more mathematical
detail the identification we have made between relations and function-valued
functions. Any binary relation R between members of sets A and B can be
regarded in a standard way as a subset of A x B, the set of ordered pairs {a, b)
such «hat a is in A and b is in B. Being a set, R can thus be identified with a
function in {0, l}“ XB _ recall our earlier discussion. From this characteristi.
function, fi, of R we can define functions gg », for every b in B, and the
function hp which we will identify with R. Let
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gr.v(@) = fr({a, b)) for every a in 4 and each b in B,
hr(b) = gg.p for every b in B.

Each gg p is a characteristic function of a subset of A, and thus the range of
hg is included in {0, 1}*. Hence hg, which maps each b in B to the set of
members of A which stand in relation R to b, is a member of ({0, l}“__)’.

Note that hg(b)(a) means a stands in R to b - i.e., hg(b)(a) = fx ({a, b)),
where the notation reverses the order of @ and b. We have chosen to identify
R with a function on B because English syntax treats a transitive verb + direct
object as a constituent of a sentence, rather than subject + transitive verb.
One must take care not to confuse hgp(b)(a) with fr((b, a)), which is defined

if bEA and a €B - as, for example, with the relation expressed by loves,
where 4 = B.

PROBLEM (2-13). Let A consist of the colors red, white, and blue, and B
consist of the countries of the world; and let R be {(a, b)la appears in the flag
of b}.

What is hg(Switzerland)? hg(Great-Britain)?

PROBLEM (2-14). Let A =B = {Anwar Sadat, Queen Elizabeth II, Henry
Kissinger} and let R be the relation {{Anwar Sadat, Queen Elizabeth II),
(Queen Elizabeth II, Henry Kissinger), (Henry Kissinger, Anwar Sadat)}.
Diagram the corresponding function hg in the form exemplified in (2-22).

PROBLEM (2-15). Of what set is (2-31) the characteristic function? If this

set were assigned as the value of it-is-not-the-case-that, how would (2-32) be
stated?

PROBLEM (2-16). Suppose and and or were assigned as semantic values the
sets corresponding to the respective characteristic functions given in (2-33)
and. (2-34). How would semantic rule (2-35) then be stated?

PROBLEM (2-17). Find the two-place relation R on individuals such that
(x, ¥y)ER iff a hates § is true, where [a} =x, [8] =y, and [hates] is as
given in (2-26).

PROBLEM (2-18). Express (2-33) and (2-34) as functions with domain {1, 0}
and having as values functions from {1, 0} to {1, 0}. Write the semantic rule
corresponding to (2-35) under this new formulation of {and ] and [or].
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As we remarked, we could reformulate the syntax and semantics of L, in
such a way that the logical symbols are treated as basic expressions and
assigned semantic values directly. One way to do this would be as follows:

Add to the basic expressions of Ly:

Category Basic Expressions
Sentence operators L
Sentence connectives AV, e

Replace formation rule 3. in (2-2) by:

3. If ¢ is a sentence and a is a sentence operator, then a¢ is a
sentence.

and replace formation rules 4. through 7. by the single rule:

4. If ¢ and Y are sentences, and a is a sentence connective, then
[9ay] is a sentence.

The reader can easily determine that this modified syntax specifies exactly
the same set of well-formed sentences as did (2-2) (although of course not the
same set of well-formed expressions of all categories, since we have added
new categories).

To the semantics we add the specifications of the semantic values of the
sentence operator and the sentence connectives corresponding to their truth
tables. “~,” for example, will receive the semantic value given in (2-31), and
“A” will be assigned the same semantic value given to and in (2-33).

The semantic rules will then be amended in the following way. Replace
semantic rule 3. in (2-8) by:

3. If ¢ is a sentence and a is a sentence operator, then [a¢] =

(o)D)

and replace semantic rules 4. through 7. by the single rule:

4. If ¢ and Y are sentences, and « is a sentence connective, then

[[¢a¥]] = [a}(le), VD).

The reader should have little difficulty in ascertaining that the same
semantic values will be assigned to the sentences of L, as before.

PROBLEM (2-19). Revise the syntax and semantics of Log so that and, or,
and it-is-not-the-case-that are introduced syncategorematically.
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PROBLEM (2-20). Revise the syntax and semantics of L so that the paren-
theses and square brackets as well as the logical connectives are treated as
basic expressions.

PROBLEM (2-21). Give a syntax and semantics for Lq in which each sen-
tence connective (i.e., “A,” “v,” “=,”’ and “+’’) combines syntactically with
a single sentence to yield an expression of the category “‘sentence operator.”
For example, A and M(b) will form the sentence operator M(b) A, which will,
in turn, combine with another sentence, say B(j), to give {[M(b) A B(j)].
Write the semantic rules in such a way that each non-basic sentence operator

will be assigned an appropriate semantic value.

III. A SYNOPSIS OF TRUTH-CONDITIONAL SEMANTICS

We now summarize the essential points that are common to the applications
of truth-conditional semantics we have presented so far.

First, we must emphasize that any truth-conditional semantics is always
tightly interconnected with the syntax of the language in question. This is
why the first step in the consideration of our example languages Log and
L, was to specify the syntax. One should not infer from this, however, that
in order to do truth-conditional semantics on, e.g., English, all syntactic
questions must first be settled. Quite the contrary. The close interconnections
between syntax and semantics mean that certain decisions made with respect
to the syntax will have consequences for the semantics, and the converse is
also true, but nothing prevents research in both areas of a language from
proceeding in parallel. Log and L, of course, were deliberately chosen to be
very simple languages with relatively few problems in the syntax so that we
could illustrate the truth-conditional semantic method.

What is the minimum that a truth-conditional semantics requires of the
syntax in order to operate? There must be at least aset of syntactic categories,
one of which is the category ‘“sentence’” or something of the sort — the
category associated with truth or falsity. There must in addition be some
initial assignment of expressions of the language to these categories, and
then, since in every interesting case we will be dealing with an infinite
language, there must be rules which effect the assignment of the remaining
well-formed expressions to their respective categories. We have seen how all
this can be accomplished by a system of context-free phrase-structure
rules in the case of Log or by a system of initial assignments of basic expres-
sions to categories and recursive formation rules in the case of Lo. We will
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return in a moment to consider some important ways in which these systems
of syntactic specification differ, but for now it suffices to note that either
one accomplishes syntactically what is necessary for the semantics.

What, then, are the essential ingredients of a truth-conditional semantics,
given the aforementioned syntactic information? They are as follows:

1. A set of things which can be assigned as semantic values. In the
system assumed thus far these are (1) a set of individuals, (2)a
set of truth values, and (3) various functions constructed out of
these by means of set theory.

2. A specification for each syntactic category of the type of seman-
tic value that is to be assigned to expressions of that category
(e.g., names are to have individuals assigned, etc.) Sentences are
to be assigned truth values.

3. A set of semantic rules specifying how the semantic value of any
complex expression is determined in terms of the semantic values
of its components.

4, A specific assignment of a semantic value of the appropriate type
to each of the basic expressions.

It might be helpful for the reader at this point to return to the relevant
sections of this chapter and check that it was in fact just this information
that was specified in giving the semantics of both Loz and L.

Item 3 above contains an implicit assumption that our semantics is to
adhere to the Principle of Compositionality, which we referred to earlier.
As we saw, adherence to this principle leads us to construct our syntax and
semantics so that they work in tandem.

Consider, for example, a syntactic formation rule of the form “if a is an
A,and Bisa B, ..., and u is an M, then f(a, B, ..., u) is an N>’ (where A4,
B,...,M, N are syntactic categories). The function f specifies how the
inputs are to be mapped into the output, i.e., it specifies the mode of com-
bination of the arguments. Corresponding to this syntactic rule there will
be a semantic rule of the form “if aisanA4,and fisa B, ..., and u is an M,
then [fla, B, ..., w)] isg([al, B8], ..., [u])”. Here, g is a function which,
30 to speak, specifies the “semantic mode of combination™ of the semantic
values which are its arguments. The situation can be represented by a diagram
such as the following:
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(241) Syntactic formation rule Semantic rule
a f u (aBlB). .. [u]
Vo { I {
f g
) 4
v=fla,p,..., 1) vl = [f(a,8...,0)]

= g([a), [B),...,[uD)

To use a precise mathematical term for this situation, we may say that
there is a homomorphism from syntax to semantics. Since the mapping is not
an isomorphism but only a homomorphism, different syntactic structures can
receive the same semantic value.

As an example, consider the first syntactic formation rule for Ly in (2-2).
This rule takes as inputs a one-place predicate and a name and yields an
expression of the category “sentence.”’ The function f which expresses the
syntactic mode of combination can be stated as follows: write the one-place
predicate followed by a left parenthesis followed by the name followed by a
right parenthesis. The corresponding semantic rule, rule 1. of (2-8), says that
if § is a one-place predicate and « is a name, then the semantic value of 6(a),
i.e., of f(6,a), is a function of the semantic values of § and «; specifically, this
function is one which assigns to §(a) the semantic value true just in case [a]
is a member of [8], and assigns it false otherwise. Examination of the remain-
ing syntactic and semantic rules of L, in (2-2) and (2-8) reveals that the
homomorphism dictated by the Principle of Compositionality is indeed pre-
sent. It was in fact the ease of constructing the desired homomorphism
between syntax and semantics that led logicians to give their syntactic rules
the form that they did. To the linguist, who is accustomed to phrase-structure
rules as devices for expressing immediate constituent structure, the logician’s
syntactic formation rules may at first appear rather strange, but then, after
some reflection, the two systems may appear to be, in effect, notational
variants. It is easy to see that a phrase-structure rule of the formA +BC. ..
M (where 4,B, C, . .., M are all non-terminal symbols) expresses roughly the
same sort of syntactic information as does a formation rule of the form “If §
is a member of category B, ..., and u is a member of category M, then
B...u is a member of category A.”” Note that the function which specifies
the mode of syntactic combination in this rule merely concatenates the
arguments in a particular order, and in fact any context-free phrase-structure



44 CHAPTER 2

grammar can be converted into an equivalent set of syntactic formation rules
in which the mode of combination involves only concatenation, just as was
demonstrated for Log in Problem (2-12). However, syntactic formation rules
as used by Montague will allow considerably more complex modes of com-
bination than this — they can, for example, be operations that are carried out
by transformational rules of a transformational grammar — and for this reason
it is not true that for every set of syntactic formation rules there is an
equivalent context-free phrase-structure grammar. Formation rules which
exploit this possibility of carrying out “transformation-like’’ operations
figure prominently in Montague’s system for English in PTQ.

IV. THE NOTION OF TRUTH RELATIVE TO A MODEL

Let us return now to the list of four essential components of a truth con-
ditional semantics we gave earlier. If we look at them more carefully, we see
that the items in the list fall into two broad classes corresponding to the kinds
of factors which go into determining the semantic values of a sentence. We
could say, roughly, that a particular sentence gets the semantic value that it
does - is either true or false — because of certain formal structural properties
that it has on the one hand, and on the other hand because of certain facts
about the world. To take an example from Lqg, the sentence Liz snores gets
the semantic value 1 (true) because all the following considerations interact
to yield this result:

1. Liz has as its semantic value Queen Elizabeth II.

2. snores has as its semantic value a function from individuals to
truth values which maps Queen Elizabeth Il into 1.

3. Liz is a name, and snores is an intransitive verb, and the truth
value of any sentence composed of a name plus an intransitive
verb is determined by applying the function which is the semantic
value of the intransitive verb to the argument which is the seman-
tic value of the name.

Of these, the last is a theory-internal condition which is specified as a part of
our semantic theory for Lyg in particular. The first two, however, are con-
ditions which have to do with assumed facts about the connections between
the language and the world and facts about the way the world is. That is, Liz
snores might receive a different semantic value if Liz referred to (had as its
value) someone other than Queen Elizabeth II or if snores referred to some
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other set of individuals (i.e., if different people snored than those who are
assumed to snore). The truth value of Liz snores might also be different if we
computed the semantic value of N + V; sentences in some way other than
that given, but if so, that would be an essential modification of the semantic
system of Log, and that is a different sort of variation than is involved in
imagining, say, a different set of snorers.

All this discussion is by way of introducing the notion of a model. Form-
ally, a model is an ordered pair ( 4, F' ), where A4 is a set, the set of individuals,
and F is a function which assigns semantic values of the appropriate sort to
the basic expressions. All the rest (for which there seems to be no standard
name in the literature) is taken as the fixed part of the semantics for a par-
ticular language, and we may then examine the effect on the semantic values
of expressions in the language as we allow the model to vary. The various
choices of a model, then, are intended to represent the various ways we might
effect the fundamental mapping from basic expressions to things in the
world, while the fixed remainder represents the contribution to semantic
values (and in particular, to truth values of sentences) made by the semantic
theory itself. Having made this distinction, it is no longer sufficient to say
that S is true simpliciter; rather, we must say that S is true with respect to (a
particular) model M. As a notation for this, we use the notation for semantic
values together with a superscript for the model.

(242) Notational Convention 3: For any expression a, we use
[a]™ to denote the semantic value of a with respect to
model M.

The .model we chose to illustrate the semantics of Log is ( Aok, FoE ),
where Aog is the set {Anwar Sadat, Queen Elizabeth II, Henry Kissinger},
and F,g is the function which is the union of the sets given in (2-12)
(represented as a function), (2-13), (2-14), (2-15), (2-22), (2-26), and (2-27).
Why do we not include in this list the functions assigning values to and, or,
and it-is-not-the-case-that, i.e., (2-31), (2-33), and (2-34)? The reason is that,
although these are indeed a part of the assignment of semantic values to basic
expressions, these particular basic expressions are distinguished from all the
others in being a part of the *“logical’’ vocabulary of the language; hence, their
values are taken to be fixed once and for all and are not considered as part of
the variable model. That is, after all, what we would expect of the constants
of a particular logic: we can easily imagine different situations in which the
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set of snorers varies, but it is difficult to imagine a situation in which and
means something other than what it does in our world. Thus, we amend our
characterization of a model given above to say that the function F assigns
semantic values to all the basic, non-logical expressions of the language.

Since the notion of truth with respect to a model plays a central role in
most versions of truth-conditional semantics (and all versions discussed in this
book), the term model-theoretic semantics is often used as a broad term for
the kinds of approaches to semantics we are concerned with: we will hence-
forth adopt this term ourselves.

In the model we chose for L, the set A was the set of all living persons and
the function F was given in (2-7). It may be helpful to consider some other
possible models for L, in order for the reader to grasp firmly the point that a
sentence may be true with respect to one model and false with respect to
another.

The model M, (=(A,, F,))

A, is the set of states of the United States. F, is defined as follows: F;(m) =
Michigan, F,(j) = California, F;(d)= Alaska, F,(n) = Rhode Island,
F,(M) = {Maine, New Hampshire, Vermont, Massachusetts, Connecticut,
Rhode Island}, F,(B) = the set of states that have Pacific coasts, F,(K) = the
set of pairs of states such that some part of the first lies west of some part of
the second (e.g., both ( Washington, Oregon) and (Oregon, Washington ) are in
this set), F,(L) = the set of pairs of states such that the first is larger than the
second. (Note that we have expressed the semantic values of K and L as
ordered pairs. The reader should make the mental translation to functions
from states to characteristic functions of sets of states.)

The mOdele (= (Az, F2 ))

A, is the set of all integers (positive and negative whole numbers and 0).
Fi(j)=0, Fa(m)=2, Fo(d)=9, Fa(n)=—1, F(M) = the set of all odd
integers, F,(B) = the set of all perfect squares, F,(K) = the set of all pairs
of integers such that the first is greater than the second, i.e., F(K)=
{&, ¥)ix >y}, and Fy(L) = the set of all pairs of integers such that the first
is the square of the second, i.e., F,(L) = {(x,»)Ix = y?}.
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The modelM; (= (A3, Fg))

A, is the set of all chemical elements. F; is defined as follows: F3(m)=
magnesium, F;(j) = iodine, F,(d) = krypton, Fy(n)=sodium, F;M)=
the set of “rare-earth” elements, F3(B) = the set of halogen elements,
F;(K) = the set of all pairs of elements such that the first has a greater
atomic number than the second, F3(L) = the set of all pairs of elements
such that the two form a chemical compound containing no other elements.

The sentence M(d) is false with respect to M, (because Alaska is not in
FyM), i.e., not a New England state), true with respect to M, (because 9 is
odd), and false in M, (because krypton is not a rare-earth element). The
sentence B(j), on the other hand, happens to be true in all three models
(because California has a Pacific coast, O is a perfect square, and iodine is
a halogen). The sentence K (j, n) is true in M, (California is west of Rhode
Island), true in M, (0 is greater than —1), and true in M, (iodine has a greater
atomic number than sodium). Finally, L(n, m) is false in all three models
(Rhode Island is not larger than Michigan, nor is —1 the square of 2, nor does
sodium form a compound with magnesium).

PROBLEM (2-22). Construct a model for Ly in which M(d), B(j), K(j, n),
and L (n, m) are all true.

V. VALIDITY AND ENTAILMENT DEFINED IN TERMS OF
POSSIBLE MODELS

There are various advantages that the notion of truth relative to a model has
over the notion of truth simpliciter. The logician (or linguist, for that matter)
may not actually be very interested in, say, the set of all bald persons and the
question of just which persons belong to the set and which do not, or in
similar questions about the denotations of other basic expressions, the
answers to which would involve a great deal of empirical knowledge but
would not be particularly enlightening for the overall theory of semantics.
But it is nevertheless of interest to formulate one’s semantics explicitly
enough that if these basic denotations were ever specified in some way or
other, then the precise definitions of truth for the sentences of the whole
language would follow automatically. Or the logician might be interested in
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describing the syntax and basic semantic procedure for an “all-purpose’
formal language that might profitably be put to use in talking about various
domains of discourse.

But there is an even more important reason for being interested in the
notion of truth relative to a model: Consider the difference between the
sentences [B(j)A K(d,j)] and [B(j)— [K(d,j)—=>B(j)]] of L, in the
model given earlier in (2-7). Both of these sentences are true in this inter-
pretation, but there is more to be said about the truth of the second sentence
than just this. Its truth does not really depend in any way on the semantic
values assigned to the basic expressions in it, but rather can be traced to
general properties of its syntactic form and to the way we have given truth
conditions for the conditional connective (viz., the semantic rule 6. in (2-8)).
In fact, any sentence of the form [¢ = [ = ¢]] will turn out to be true in
L,, given any possible model whatsoever. (A sentence with this form will no
doubt be recognizable to the reader as one of the walid sentences, or
tautologies, of the propositional calculus, of which our language is a rather
simple extension.) The former sentence, on the other hand, will be true in
some models and false in others, depending on the denotations assigned to B,
K, d and j by the model. It turns out that by distinguishing those sentences of
L, that are true with respect to all models from those that are true only with
respect to some of the possible models, we can give a definition of valid
sentence of L, (or logically true sentence of L,) that satisfies the usual
expectations as to which sentences of this language ought to count as
logically valid:

(1) A sentence of L, is valid iff it is true with respect to every
possible model for L.

Other familiar logical properties of sentences and relations between sentences
can also be defined by using the notion of truth with respect to a model,
quantifying over the class of possible models:

(2) A sentence of L, is contradictory iff it is false with respect to
every possible model for L.

3) Two sentences of L, are logically equivalent iff the first is true in
exactly the same models in which the second is true and in no

others.
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4) A sentence ¢ of L, is a logical consequence of a set of sentences
" (or equivalently, I' logically entails ¢) iff every model in which
all the sentences of I" are true is a model in which ¢ is true also.

Now the possibility of giving definitions of these notions will be of as
much interest to the linguist as to the logician since it is widely held among
linguists that an account of these properties of English sentences and relations
among English sentences is an important goal (some would say the goal) of
semantics.

For the relation logically equivalent we would like to be able to substitute
synonymous but cannot because most philosophers of language and linguists
hold synonymy to be a much narrower relation among sentences, their syn-
onymy taking into account various subtleties such as focus, conventional
and conversational implicature, perhaps stylistic connotations of particular
words, all of which we are ill-equipped to deal with formally at present. But
fortunately the relation of logical equivalence seems to be a more workable
and useful relation in the initial stages of developing a semantic theory for
natural language.

Although we have defined logical entailment as a relation between a set
of sentences I' and a sentence ¢, we can obviously consider entailment
between a pair of sentences as the special case of this definition in which the
set I’ contains only one sentence. Logical equivalence is of course simply
mutual logical entailment between a pair of sentences.

PROBLEM (2-23). Find and example of each of the followingin L, £: (1) a valid
sentence, (2) a sentence which is true in the model of Lyfg given in the text
but not valid, (3) a contradictory sentence, (4) a sentence which is false but
not contradictory, (5) two sentences which are logically equivalent, (6) a non-
empty set of sentences I" and a sentence ¢ (not in I') such that ¢ is a logical
consequence of I" but not of any proper subset of I".

There are, to be sure, other properties of sentences or parts of sentences and
relations among them that linguists have traditionally treated under the
rubrics of synonymy (or logical equivalence) and entailment. For example,
the validity of the sentence If John is a bachelor, then he is an unmarried man
is attributed to the ‘synonymy’ of the phrases bachelor and unmarried man.
Yet it is not at all obvious how the notion of truth with respect to a model
can be extended to account for this example, since the unvarying truth of this
last example cannot be traced to the syntactic form of the sentence but
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rather depends also on the particular basic expressions bachelor, unmarried
and man. (If we were to follow Quine’s terminology, we would refer to this
latter kind of example as an analytic sentence and the former example, in
which the syntactic form is responsible for validity, as a logically true sen-
tence.) More will be said about such cases later.

VI. MODEL THEORY AND DEDUCTIVE SYSTEMS

The reader is probably aware that there is an older, more traditional way of
characterizing validity and entailment for formal languages in terms of the
notions of a deduction and rules of inference. This may be accomplished
either through an axiom system or, in most contemporary logic texts, a
system of natural deduction (cf., e.g. Blumberg, 1967). By the axiomatic
method, a list of axioms (or axiom schemata) and a rule (or rules) of inference
are given for a formal language, and then a proof is defined as any sequence
of sentences of the language such that each sentence is either an axiom (or
instance of an axiom schema) or follows from one or more of the preceding
sentences of the sequence by some rule of inference. A theorem (which is
to correspond to our intuitive notion of a logically true sentence) of the
language is any sentence ¢ of the language for which there is a proof ending
in ¢. To illustrate, the following is a possible axiomatization for a proposi-
tional language which resembles L,, except that it treats A, v, and « as
defined in terms of 0 and —. We have here axiom schemata rather than
axioms proper because they are stated in terms of meta-language variables
rather than actual sentences of Ly; hence each line is a schema for an infinite
number of sentences of L, with similar syntactic forms, each of which is an
axiom.

(A1)  [¢~ [Vl
(A2)  [le~>[v->xN1~[[e~> V]~ [o~>x]l]
(A3)  [[hy ¢l > [Py ¢l >Vl

With these axiom schemata, one rule of inference would suffice to complete
the axiomization of Lo, the rule of modus ponens (also known as the rule of
detachment.) This is the rule that permits one, when given ¢ and [¢ = V], to
infer .

With such a deductive apparatus, definitions of properties of sentences and
relations among sentences can be given which can be proved to correspond
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Definitions in terms of possible models:

. A sentence of L, is valid iff it is true
with respect to every possible model
forL,.

. A sentence of L, is a contradiction iff
it is false with respect to every possible
model for L.

. A sentence ¢ of L, islogically entailed
by a set of sentences I' iff every model
in which all the sentences of T" are true
is a model in which ¢ is true.

. Two sentences of L, are logically
equivalent iff they are true in exactly
the same models (or equivalently, if

exactly to the semantic definitions given earlier in terms of possible models.
This correspondence is illustrated by the table below:

Corresponding deductive definition:

. A sentence of L, is a theorem of L,

iff there is a proof of it from the above
axiom schemata alone.

A sentence of L, is a contradiction iff
its negation is a theorem of L,.

. A sentence ¢ of L, is deducible (or

provable) from a set of sentences T iff
there is a sequence of sentences of L,
such that each is either an axiom or
belongs to I" or else follows from some
of the preceding sentences in the
sequence by the rule(s) of inference,
and ¢ is the last sentence of the
sequence.

. Two sentences of L, are logically

equivalent iff each is deducible from
the other.

each logically entails the other.)

The possibility of giving corresponding deductive and semantic definitions for
logical systems is of fundamental significance in modern logic, and indeed
much research in logic is devoted to producing the semantics and correspond-
ing axiomatizations for various logics and proving mathematically that the
semantic definitions of validity and logical consequence are in fact exactly
equivalent to the definitions of theoremhood and deducibility that result
from the axiomatization. (See Blumberg 1967 and Henkin 1967 for
additional discussion.)

The method of axiomatization is relevant to our present discussion
because it has suggested to some linguists that an axiomatization (or perhaps
natural deductive system) might be given for an appropriately formalized
language of semantic representations (or as Lakoff (1972) has called it, a
natural logic), thus enabling us to account for all the relations of entailment,
logical equivalence, etc., that exist among English sentences, without appeal
to model-theoretic semantics. This would be particularly appealing to the
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linguist in view of the ideal of the ‘“autonomous semantic representation’
that has no defined relation to non-linguistic (or non-mental) objects. ‘Lin-
guistics and Natural Logic’ (Lakoff 1972) seems to suggest that a deductive
system of some sort is to be the means of achieving Lakoff’s goal of ‘“‘a logic
which is capable of accounting for all correct inferences made in natural
language and which rules out incorrect ones.” (p. 589).

But two points need to be made in response to this suggestion. First, to
take the construction of an axiomatic system (but not a formally interpreted
language) as the goal of the semantic analysis of natural language is, in an
important sense, to miss the point of what semantics is all about. It is true
that the advantage of symbolic logic, in its early form, was that it allowed
one to completely ignore the meaning of the propositions involved in an
argument and concentrate on the form of the argument entirely. Deductive
systems are purposefully formulated in just such a way as to make inter-
pretation of the primitive symbols irrelevant for carrying out proofs. Never-
theless, the ultimate interest in formal deductive systems for philosophers of
language has always lain in the way they mimic certain properties of natural
languages and how people use them, and languages in turn have the essential
feature of referring to objects and situations beyond themselves. Without
their reference to things in the world, human languages would be impossible
to imagine. Notions such as “synonymy’ and “entailment’’ thus always have
lurking behind them the connection of languages with the world, and it is
these connections which ultimately give the logical properties of sentences
their interest for us, whether we temporarily ignore the connections with the
world or not. The definition of truth with respect to a model has the advant-
age that it allows us to capture the definitions of logical truth, logical entail-
ment, and related notions and at the same time to capture our intuitions of
the essential ““aboutness’’ of natural language; deductive systems satisfy only
the first of these two objectives.

A second reason for preferring the semantic method to the deductive is
that certain logics cannot be given axiomatic definitions of validity and
entailment, though model-theoretic definitions of these notions are perfectly
feasible for them. It can be proved mathematically that the set of valid sen-
tences of second-order logic (logics involving quantification over predicates)
cannot be finitely axiomatized (cf. Henkin 1950), whereas a semantic defi-
nition of validity and entailment can be given.

One might wonder whether there is an axiomatization of the fragment of
English which Montague described in PTQ. We conjecture that such an axio-
matization exists. A partial positive answer is given in Gallin (1975, p. 40),
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but the general question seems still to be unsettled. Natural language certainly
contains devices (grammatical constructions and lexical items), however,
whose semantic analysis precludes any complete axiomatization (Barwise,
personal communication). For example, the semantic analysis of a sentence
like (2-43)

(2-43) There is no way for all boys to take different girls to the party.

will necessarily involve quantifying over arbitrary functions from individuals
to individuals (representing ways of pairing a boy with a girl whom he takes
to the party).

Thus from this point on, we will concentrate exclusively on model-
theoretic definitions of semantic entailment, validity and related notions,
rather than deductive systems. This is not to say that the study of deductive
systems has no interest for semantics and pragmatics of natural language. It
might, for example, have particular applications in the psycholinguistic study
of how people draw inferences from sets of sentences, or in artificial intel-
ligence studies. Rather, this means that we can safely ignore formal deductive
systems in what follows, since our model-theoretic method renders them
superfluous for our purposes.

EXERCISES

1. Suppose the phrase-structure grammar in (2-9) were expanded to allow an adverb
to modify the VP by adding the rules

VP — VP Adv
and

Adv — restlessly, harmlessly

Decide on an appropriate type of semantic value to assign to items belonging to the
lexical category “Ady” and add the required semantic rule or rules. Though the same set
of sentences would be generated if VP — VP Adv were replaced by S — S Advy, this
syntactic analysis would have untenable semantic consequences. What are they? (Hint:
think about the semantic rule you would associate with-S — S Adv, and the difference
between the type of semantic value associated with sentences versus verb phrases.)

2. The sentence John sleeps restlessly intuitively implies John sleeps. Amplify the
semantic analysis you gave in Exercise 1 so as to guarantee formally that this implication
holds. (Hint: Place a set-theoretic restriction on a function used in Exercise 1.) Note that
the treatment we have given to ‘“logical vocabulary” (e.g., and, or) is just the limiting
case of what you must do for restlessly, harmlessly, etc. The restrictions on the logical
vocabulary are so strong as to uniquely determine what semantic values may be assigned.
The model-theoretic method of studying relationships between the semantic values of
cxpressions makes it possible to capture necessary relationships of lexical meaning, like
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those between bachelor and man or unmarried noted on p. 49, by mandating that cer-
tain relationships hold between the semantic values assigned to the items in question.

3. Write a set of formation rules for a language like L, but written in “Polish”
notation. In this notation the connectives precede the formulas they connect, and
parentheses are unnecessary. The letters N, K, A, C, E are generally used as symbols for
the Polish connectives corresponding to “—,” “A,” ‘v,” “—=." and “+" respectively.
Thus, [pA[gvr]] in standard notation becomes KpAqr in Polish notation, and
ECpqAqNr corresponds to [[p—q] « [@ v—r]] in standard notation. What changes
must be made in the semantic rules for L, to accommodate the “Polish’ syntax? What
changes are necessary if the connectives are not treated syncategorematically but are
assigned semantic values directly?

4. Give a syntax and a semantics for a language which is like L, except that it con-
tains only one logical connective, *|,” defined by the following truth table:

P q [p1q]
1 1 0
1 0O 1
0 1 1
0 0 1

S. Give a syntax and a semantics for the propositional calculus (the language like
L, exccpt that propositions are not analyzed into predicates and names).
6. Suppose the following rules were added to the grammar in (2-9):

VP -V, S
V¢ — believes-that, hopes-that

What type of scmantic value would be appropriate for verbs belonging to the lexical
category V,? What difficulty arises in attempting to formulate the semantic rule for
V, + S constructions?

7. Consider a syntactic system in which each formation rule is of the form (241)
where v = ap ... u (the concatenation of a, 8, . . ., u). Prove that there is an equivalent
context-free phrase structure grammar, i.e., one with the same categories and generating
the same expressions of each category.

NOTE

(w, )
' The notation is to be understood as follows. An expression of the form 4 - | w, | or

<:}

Wn

A-w, w,, ..., w, abbreviates the n rules: 4 v w,, A~ w,, ..., A~ L,,. J‘l‘he
grammar may be used to derive sentences by first writing the symbol S (or, to derive
phrases of any category A, by writing A) and then carrying out a series of steps using the
rules to rewrite strings until no further rewriting is permitted. If at a given stage the last
string produced isa, a,. . . a,,, and for some i there is a rule a; = w, then it is permitted
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to rewrite the string further and produce a; . .. a;_jwa;4g . . .agn. For example, S may
be rewritten as S Conj S or as Neg S or as N VP. If one rewrites it as N VP, the deriva-
tion may continue either by rewriting the latter string as Sadie VP or as N V; (or as any
of three other possibilities). It is irrelevant which of the symbols N or VP one replaces
first; since the grammar is context-free any string of words that can be derived one way
can also be derived the other way.

One can construct a structural description as the derivation proceeds which omits the
irrelevant information about order of rewriting but records the very relevant facts about
what string replaced each nonterminal symbol The information can be represented as
either a tree structure or a labelled bracketing. To construct, say, a tree, while carrying
out a derivation, begin by simply writing the same symbol that initiated the derivation.
As each step of the derivation replaces a nonterminal symbol by a string, augment the
tree by adding the replacing string of symbols beneath the nonterminal symbol corre-
sponding to the one replaced and connecting these new symbols to that one. If one
starts from S, for instance, the tree begins simply as S too. If S is replaced by N VP the
tree grows to /S\ . If the string is then rewritten as Sadie VP, the tree becomes /S\\ .

N vp 1|V |44
Sadie

On the other hand, of one had rewritten N VP as N V;, the second three above would
have grown insteadto S

N VIP
Vi
If after replacing one of the symbols N and VP, one then makes the other replacement
in the resulting string, he gets the string Sadie V; in either case. The two different deriv-

ations of this string both correspond to the tree /S\ , and are thus seen to be

N VP

(.
Sadie V,

equivalent.



