CHAPTER 3

FIRST-ORDER PREDICATE LOGIC

L THE LANGUAGE L,

We turn now to the construction of a formal language L, , which adds indivi-
dual variables and quantifiers over these variables to the syntactic apparatus of
the language L. In fact, this language L, contains L,, in the sense that all the
sentences of Ly will also be sentences of L, (but not conversely), and these
sentences of L, will have to be interpreted just as before. As these new
individual variables (for which we will use the symbols v, v,, v3, .. .) behave
syntactically just like individual constants, we will introduce the new syntac-
tic category of individual terms (or simply terms) to include both variables
and constants.

1. Syntax of L,

A. The basic expressions of L, are of four categories:

1.
2.

3.
4.

NoUAw

the namesd, n, j, and m

a denumerably infinite supply of individual variables v,, v, v, . . .
(To avoid having too many subscripts in our formulas we will some-
times use x to stand for v,, y to stand for v,, and z to stand for v;.)
Together, the names and individual variables of L, comprise the terms
of L,.

the one-place predicates M and B.

the two-place predicates K and L.

The formation rules of L, consist of the following:
1.
2.

If § is a one-place predicate and a is a term, then §(«) is a formula.

If v is a two-place predicate and a and § are terms, then y(a, f) is a
formula.

If ¢ and Y are formulas, then so are:

"¢

[6n V]

[ovy]

Rd

(¢« V]
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8. If ¢ is a formula, and u is a variable, then Vu¢ is a formula.
9. If ¢ is a formula, and u is a variable, then 3u¢ is a formula.

(Note that in clauses (8) and (9) u is used as a meta-language variable ranging
over the variables of L, ; this is the only case of a non-Greek letter being used
as a meta-language variable.)

In these rules we have used the term ‘formula’ where the term ‘sentence’
was used earlier. This follows the traditional practice of reserving the term
sentence for a formula containing no free occurrences of variables, whereas
formulas may or may not contain free occurrences of variables. The distinc-
tion between free and bound occurrences of variables is no doubt already
familiar to the reader: an occurrence of a variable u in a formula ¢ can be
defined as bound in ¢ if it occurs in ¢ within a sub-formula of the form
vuy or Juy; otherwise, that occurrence is free in ¢. The syntactic rules do
nothing to avoid so-called vacuous quantification, quantification over a
formula with respect to a variable that does not occur in it; e.g. we can form
vxK(j, m) from K(j, m), or 3yB(x) from B(x). It would complicate the
syntax greatly to prohibit such formulas, and moreover, the semantic rules
will turn out to treat such vacuously quantified formulas as if the vacuous
quantifier simply weren’t there: VxK(j, m) will be interpreted exactly like
K(j, m), and 3yB(x) will be interpreted like B(x). Hence the vacuous quanti-
fiers are harmless if we are willing to ignore them.

The novelty in the interpretation of L, over L, lies primarily in the notion
satisfaction of a formula by an assignment of objects to variables (which is
Tarski’s term) or, to use the completely equivalent notion found in PTQ,
the truth of a formula with respect to an assignment of values to variables.

The need for such a notion within a compositional semantics can perhaps
be best grasped intuitively in the following way. In introductory treatments
of elementary logic it is usually said that formulas with free variables cannot
be either true or false as they stand because the variables themselves do not
denote any particular individuals, hence the formulas make no real assertion
until the variables have been quantified (or perhaps replaced with names in
the course of a deduction). Thus we have Russell’s term propositional
function for such formulas; they are regarded not as propositions but as
functions which give propositions when supplied with individuals as argu-
ments. Quantified expressions are then treated in the following way: a
sentence VxB(x) is true just in case B(x) is always true when x is regarded
as denoting any member of the domain of discourse whatsoever; similarly,
AxB(x) is true if there is at least one individual in the domain such that
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B(x) is true when x is regarded as denoting that individual. (Alternatively,
VxB(x) may be said to be true when the result of substituting for x in B(x)
a name of any individual in the domain of discourse always gives a true
sentence. This approach leads to the substitutional theory of quantification,
but we will not be concerned with that theory here.) The treatment of
multiple quantifiers and quantifiers binding arbitrarily complex sentences is
then left pretty much to intuition, except for pointing out that it is necessary
to distinguish scope relations carefully. For example, it might be said that
to find out whether Vx3yL(x, y) is true we must “try out’ all values for x,
and for each one of these values of x we must try to find some value for y
that makes L(x, y) true. On the other hand, for 3yvxL(x, y) we must find a
single value for y according to which L(x, y) will remain true as the value of
x is allowed to range over every member of the domain in turn. Such proce-
dures are usually not rigorously specified, though of course explicit proce-
dures may be given for carrying out deductions involving multiple quantifiers
and arbitrarily complex formulas.

A little thought should convince the reader that something new will be
needed if we are to give explicit truth conditions for quantified sentences
by the compositional principle followed for Ly. Since the rules introducing
quantifiers (B.8 and B.9) make a sentence Vu¢ from any sentence ¢ and any
variable 4, we must be able to give a completely general semantic rule for
the truth conditions for Vu¢ in terms of the truth or falsity of ¢, no matter
what ¢ is. Now consider what will happen when we try to determine the
truth conditions for Vx3yL(x, y) by this method. This formula is syntacti-
cally formed by first constructing the atomic sentence L(x, y), then adding
a quantifier by B9 to give 3yL(x, ), then finally adding a second quanti-
fier by B.8 to give Vx3yL(x, y). The semantic rules will retrace these stages.
Thus the truth definitions corresponding to syntactic rule B.9 will have to
give the truth condition for 3yL(x, y) in terms of L(x, y) (and later, the
rule corresponding to B.8 will have to give the conditions for Vx3yL(x, y)
in terms of 3yL(x, y)). But at the stage where y is quantified, the formula
L(x, y) has, in addition to the variable y being quantified at this step, the
variable x which is still free as far as B.9 is concerned. Note also that in some
syntactic derivations involving 3yL(x, y) the variable x will later be bound
by a universal quantifier, and in other derivations by an existential quanti-
fier. Of course this is the minimally simple case of multiple quantifiers;
other cases will require that the semantic rule corresponding to B.8 give
truth conditions for Wu¢ where ¢ has besides u any number of other
free variables which will be bound at later stages. Obviously, free variables
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have to be dealt with as such by the semantic rules if a compositional seman-
tics is to be given. As Tarski put it, “‘compound sentences are constructed
from simpler sentential functions [i.e., formulas that may have free variables],
but not always from simpler sentences” (Tarski 1944, p. 353).

It seems that what we need for these cases is some systematic means of
“pretending” that each free variable denotes some individual or other, and then
later systematically revising our assumption about which individual is denoted
by these variables as we reach the appropriate quantifier at the “outer” or
“higher” stages of the syntactic formation of the formula. Tarski’s notion of
satisfaction (or truth relative to an assignment to variables) is designed to do
just that. Accordingly, we will add to the semantic machinery already described
for Ly the notion of a function assigning to each variable of L, some value from
the domain A. Such a function is called an assignment of values to variables, or
simply a value assignment. We will use the symbol g to denote such a function.
(Since we have given L, an infinite supply of variables, the domain of g will
be infinite, but functions with infinite domains present no particular
problems.) The function g need not be one-to-one of course; in fact, it is impor-
tant that we allow some value assignments to assign the same individual to
more than one variable. For that matter, there is nothing wrong with a value
assignment that assigns the same individual from A to every variable.

The definition of truth relative to a model will now be given in two stages.
First, we will give a recursive definition of true formula of L; with respect to
a model M and value assignment g Then, on the basis of this intermediate
definition, we can very simply state the final definition of true sentence of
L, with respect to a model M. (Note that the value assignment g is not to be
considered part of the model M - it has nothing to do with how we interpret
the constant basic expressions of the language.)

The reader may ask at this point how we decide which value assignment
to pick. The answer is, it doesn’t matter at all, so long as we pick a particular
one. The ultimate definition of truth with respect to a model will turn out
not to depend at all on which assignment g was initially picked to “compute”’,
as it were, the intermediate truth definition, since the semantic rules syste-
matically make reference to other value assignments differing from the
original g in specified ways. The formal definitions are as follows:

2. Semantics of L,

A model for L, is an ordered pair (4, F) such that 4 is a non-empty set and
F is a function assigning a semantic value to each non-logical constant of L,
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(i.e., names, one-place predicates, and two-place predicates). The set of possi-
ble semantic values for names is 4; the set of possible semantic values for one-
place predicates is {1, 0}4; the set of possible semantic values for two-place
predicates is ({1, 0}*)*, (Here we again use the standard set-theoretic
notation “XY” to stand for the set of all functions from Y to X.) A value
assignment g is any function assigning a member of 4 to each variable of

L,. We abbreviate “the semantic value of a with respect to M and g” as
[a]™e.

A. Semantic values of basic expressions:
1. If u is an individual variable of L, , then [u]™' ¥ = g(u).
2. If a is a non-logical constant of L, , then [a]™: # = F(a).

B. Truth conditions for formulas of L, relative to M and g:

1. If & is a one-place predicate and a is a term, then [6(a)[™- ¥ =
[81™ #([a]™®).

2. If v is a two-place predicate and a and B are terms, then [y(a, )™ =
[y D™ 2C181™ ) ([ ] ™ #).

3.-7.If ¢ is a formula, then [¢]™ # =1 iff [¢]™ # = 0; otherwise,

[-¢]™ ¢ = 0. Similarly for [p A ¥], [#v¥], [6> V], and [¢  ¢].

8. If ¢ is a formula and u is a variable, then [ Vug]™: & = 1 iff for every
value assignment g’ such that g’ is exactly like g except possibly for
the individual assigned to u by g’, I[¢]IM' ¥ -,

9. If ¢ is a formula and u is a variable, then [3u¢]™ ¢ = 1 iff for some
value assignment g’ such that g’ is exactly like g except possibly for
the individual assigned tou by g’, [¢]™ ¥ = 1.

As should be clear, the semantic value [a]# of any expression a can
depend on the particular assignment g only with regard to what values g
assigns to variables that are free in a. That is, if g(u) = g'(u) for all variables
u that are free in a, then [a]™? = [a]™# . If a is a basic expression, this
follows directly from A. When a is a formula, it follows from two facts:

(i) that the free variables of the formulas treated in clauses B.1-7 are

exactly those that are free in one or more of the next smaller parts; and

(ii) that the free variables of the formulas treated in clauses B.8-9 are all

those except u which are free in the next smaller part and, moreover,
the semantic value of the larger formula in B.8-9 is independent of
what g assigns to u.
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C. We adopt the following truth definition for formulas of L, relative to M:

1. For any formula ¢ of L,, [¢]™ =1 if [¢]"% =1 for all value
assignments g.

2. For any formula ¢ of L,, [¢]¥ =0 if [¢]™# =0 for all value
assignments g.

If a formula ¢ has one or more free variables then it may well be true with
respect to some assignments and false with respect to others. In this case its
truth or falsity with respect to M is left undefined by C. This last possibility
is of no great consequence since it is really only for the sentences of L, that
we are interested in knowing truth values independently of an assignment.!

To understand more clearly the workings of clauses B.8 and B.9, we will
consider a few simple examples.

For the sake of brevity, we will choose a model for L, with a very small
domain, viz., the set {a, b, c}. We choose a set whose members are letters of
the alphabet to facilitate the explanation that follows. It is of course some-
what odd to think of a language which can be used to talk about nothing but
letters of the alphabet, so the reader may wish to think of this set as consisting
of persons or objects of some other kind. However, as before, it is important
to keep in mind that the things in the domain A are the objects of discourse
themselves and not merely some auxiliary names of objects.

The model M will be the pair (4, F), where A is the set {a, b, c} and F is
as follows:

(3-1) Fj) = a
Fa =b»
Fin) = ¢
Fim) = a
F(M) = {a, b, c}
F(B) = {b, ¢}

F(K) = {a, a), (a, b), (b, ¢)}
F(L) = {a, c), (b, a), {c, a), {c, ¢)}.

(Note that we have specified the semantic values of M, B, K, and L in the
form of sets rather than as the corresponding functions.)

Suppose we pick as our initial value assignment g some function
that assigns the object ¢ to the variable x, assigns b to y, and assigns a to
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z. We will not worry about what g assigns to the infinitely many other
variables of L, since we will only be concerned with examples containing
these three variables. Accordingly, we may represent (the initial part of)
g as follows:

G2 [=x >c]
y—=>b
z-a

Having now given semantic values for all the basic expressions of L, , we
can consider how the truth or falsity of a formula, say VxM(x), will be
determined with respect to M and g (and ultimately with respect to M alone)
by the semantic rules of L,. The formula in question is built up first by
forming M(x) by syntactic rule B.1 and then forming VxM(x) by syntactic
rule B.8. The semantic rule B.1 tells us that in this case [M(x)]™ ¥ =1 (i.e.,
M(x) is true with respect to M and g) since g(x) = c and [M]™ ¢ = {a, b, ¢}
(more precisely, [M]™:# is the characteristic function of the set {a, b, c}.)
To determine the semantic value of VxM(x), we must determine the semantic
value of M(x) not just with respect to g but also with respect to all value
assignments like g except for the value assigned to x. Let us now introduce
the following notational convention:

Notational Convention 4: We use “gf” to indicate the
value assignment exactly like g except that it assigns. the
individual e to the variable u.

Thus in addition to g, we will have to consider the truth or falsity of M(x)
with respect to M, g2 and with respect to M, g°. Since there are only three
individuals in A, there can be only these three distinct variable assignments
differing at most in the value assigned to x (g5 is identical to g itself). These
other two are as follows (where the ellipsis represents exactly the same com-
pletions of g¢ and g2 asin g.):
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(3-3) gi:fx~a] g:[x—>b
y=>b y—=>b
Z*a Z>a

O -..-

Now we see that M(x) is true with respect to M and any of these three assign-
ments (since a, b, and ¢ are all in F(M)), hence VxM(x) is true with respect
to M, g according to semantic rule B.8. It should also be clear that this
sentence would have come out true with respect to any variable assignment g,
no matter which one we had picked at the outset, since we systematically
considered all other assignments assigning different values to x which is
the only variable appearing in the formula. Thus in accordance with clause
C.1, we drop the reference to g and say simply that VxM(x) is true relative
toM.

Note also that for an existential formula, say 3xB(x), it likewise does not
matter what g we pick originally. For the truth of this formula we require
only that some value assignment like g (except possibly for the value assigned
to x) make B(x) true. It does not matter whether the g we initially pick
happens to be one that makes B(x) true or not, as long as there is one that
does. Since all bound variables in all formulas will be interpreted through
semantic rules B.8 or B.9 sooner or later, the initial choice of g turns out to
be irrelevant for all formulas containing only bound variables, hence the
possibility of using the definition in the semantic rules in C.

As we mentioned earlier, vacuous quantification will have no semantic
consequences. Suppose we have a formula VxM(x) and we vacuously quantify
it by syntactic rule B.9, giving 3yVxM(x). By the semantic rule B.9, this will
be true w.r.t. M, g just in case VxM(x) is true w.r.t. M and to some assignment
just like g except for the value assigned to y. Now y does not occur in
VxM(x), so what value y takes on can have no effect on the truth of it;
rather, the truth value of IyVxM(x) with respect to M and this last series
of assignments will in every case be the same as the truth value of VxM(x)
with respect to M and g.

PROBLEM (3-1) Show that vacuous quantification of B(x) by syntactic rule
B.8 to yield VyB(x) has no effect on the truth value of B(x).

Now consider an example involving two quantifiers: Vx3yL(x, y), which is
formed by using syntactic rule B.2, then B.9, then B.8. We note initially that
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L(x, y) is false w.r.t. M, g because (c, b) ¢ F(L). But by semantic rule B9,
3yL(x, y) will be true w.r.t. M, g iff we can find some assignment g’ differing
only in the value assigned to y that makes L(x, y) true w.r.t. M, g'. We might
first test g5:

(34) g2 [x-c]
y—>a
Z2>a

Here, L(x, y) turns out to be true (since {c, @) € F(L)), so we know without
any checking of further values for y that 3yL(x, y) is true w.r.t. M, g. Now
we proceed to the full formula Vx3yL(x, y). By B.8 this formula will be true
w.r.t. M, g just in case IyL(x, y) is true w.r.t. M and to all g’, where g’ may
differ from g in the value assigned to x. Now we have already checked
AyL(x, y) for one of the relevant assignments, namely g itself, and found that
IyL(x, y) is true for it. We then proceed to check g2 and g? (exhibited
above). To find out whether the formula 3yL(x, y) is true w.r.t. M, g8, we
must in turn ask whether L(x, y) is true w.r.t. some assignment possibly
differing from g¢ in the value assigned to y. (Note that we earlier checked
L(x, y) with respect to assignments differing not from g but from g in
the value assigned to y; the difference between the two kinds of assign-
ments is crucial). That is, we will need to check L(x, y) for g¢, [g¢]$,
and [g¢]5 at this stage to see if it is true for at least one of them. These
assignments are:

(3-5) g2.[x-a] [21%:[x-a] (815 [x~a
y=b y—a y—>c
zZ>q Z>a zZ—>a

For the first two of these, L(x, y) comes out false (since neither (a, b) nor
(a, @ is in F(L)), but it comes out true for the third (since (a, ¢) € F(L)),
so IyL(x, y) is true w.r.t. M, g2. Finally, we check the truth of 3yL(x, y)

wrt. M, g?, [g2]2, or [g2]S:
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(36) gd:[x-0b] [£21%:[x—>b [e215:[x—> b
y—=>b y—a y—c
Z2>a Z2—>a zZ—>a
L - - J L' o . L -

The formula L(x, y) is false with respect to the first (because (b, b) & F(L))
but true for the second (because (b, @) € F(L)), so we need not bother with
the third: we already know that 3yL(x, y) is true w.r.t. M, g2.

Since we have now investigated 3yL(x, y) for all possible g’ differing from
g in the value assigned to x and found it true in these cases, we know by B.8
that Vx3yL(x, y) is true w.r.t. M, g. And since there are no free variables in
the formula, we can be assured that it would come out true with respect
to M and to any g, hence it is true with respect to M.

As a last example consider the formula 3yVxL(x, y) which is like the
previous example but with the scope of the quantifiers reversed. We begin
by noting that L(x, y) is false w.r.t. M, g because (c, b) ¢ F(L). Thus we
know already at this point that VxL(x, y) cannot be true w.r.t. M, g since
there is at least one value assignment (namely, g itself) for which L(x, y) is
false. We next move to the question whether 3yVxL(x, y) is true w.r.t.
M, g. By the semantic rule B.9, this will be the case iff there is some variable
assignment like g except possibly for the value given to y for which VxL(x, y)
is true. We already know this desired assignment cannot be g itself, so we try
others. Is VxL(x, y) true w.r.t. g/? If so, then L(x, y) must be true for all
assignments like g, except for the individual assigned to x. L(x, y) is true
w.r.t. M, g because (c, @) € F(L), but L(x, y) is false w.r.t. M, [g;]$ because
(a, @) @ F(L). Therefore, VxL(x, y) is false w.r.t. M, gJ, and we move on to
yet another assignment. Is VxL(x, y) true w.r.t. M, g5? L(x, y) is true w.r.t.
M, g5, because (c, c)E F(L). Also, L(x, y) is true w.r.t. M, [gF]5, because
(a, ¢) € F(L). However, L(x, y) is false w.r.t. M, [g]2 because (b, ¢) & F(L).
Now we have exhausted all assignments differing from g in the value assigned
to y (since g is g itself) and found VxL(x, y) true for none of them. There-
fore 3yVxL(x, y) is false w.r.t. M, g. Once again, we can see that this result
depended in no way on the g chosen at the outset, so 3yVxL(x, y) is false
w.r.t. Mby C.2.

If it has not yet become intuitively clear how this procedure works and
how it extends to more complex formulas with more quantifiers (or with
complex formulas involving sentential connectives and quantifiers), then
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the reader is encouraged to form further examples and mechanically deter-
mine their truth or falsity with respect to M or other constructed finite
models by the semantic rules for L,. Fortunately, it is never necessary to
carry out tedious computations of this sort in working with Montague’s
treatment of English — one’s intuitive understanding of formulas in predicate
logic is generally sufficient for seeing the point of the English examples.
Nevertheless, it is important to keep in mind that a rigorous model-theoretic
quantification theory underlies all the quantified formulas to be discussed
throughout the rest of the book. This is not the place, however, to discuss
mathematical proofs about quantification theory (the so-called meta-
theorems of first-order logic); for these the reader is referred to either Tarski’s
original treatment (Tarski 1935) or, what is perhaps preferable, to any logic
textbook that treats formal semantics of first-order logic (e.g. Van Fraassen
1971, Church 1956, Quine 1951).

As a final comment to our presentation of L, we note that the definitions
given in the preceding chapter of validity, entailment, etc. can be carried
over directly to this new language. Since the dependence on a value assign-
ment has been gotten rid of when we consider the truth values of sentences,
we can continue to say that a valid sentence is one which is true with respect
to every model, a contradictory sentence is false with respect to every model,
and so on.

PROBLEM (3-2) Show by a detailed consideration of the relevant value
assignments that the sentence VxVy[L(x, y) = L(y, x)] is false with respect
to the given model M. Find a model M' = (A4, F') such that the sentence is
true with respect to M.

PROBLEM (3-3) Reformulate the syntactic and semantic rules of L, so that
the logical connectives are assigned to basic categories rather than being
introduced syncategorematically. What difficulties arise in attempting to
make the same move with “V” and “3”*?

PROBLEM (34) Show that the sentences Vx[B(x)< B(x)] and
3x [M(x) > VyM(y)] are valid.
II. THE LANGUAGE Lg

Now that we have examined a logical language which allows quantification
over individual variables, we next want to consider how our English-like
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fragment, Log,from the preceding chapter might be enlarged to accommodate
similar syntactic and semantic processes. Languages L, and Log were virtually
isomorphic syntactically, and they were deliberately chosen in this way to
provide simple illustrations of the application of model-theoretic semantics
to both natural and formal languages. When we consider quantification in
natural language as opposed to a formal language such as L,, however, we
see that the two are different in important respects. Anyone who has taken
a course in symbolic logic knows that some degree of skill is required to
“translate” English sentences into first-order predicate logic. For example,
an English sentence such as “Every man walks” is to be rendered in predicate
logic as something like Vx[M(x) - W(x)], a formula which contains a logical
connective and three instances of a variable having no direct counterparts in
the English sentence. Further, both the common count noun “man” and the
intransitive verb ‘‘walks” have been represented in the logical formula by
one-place predicates. If we then go on to reflect on the fact that there are
many English quantifiers such as “most,” “few,” “many,” and ‘“much” which
have no ready correspondents in predicate logic at all, it becomes clear that
the syntax and semantics of quantification in English (or indeed of any other
natural language) cannot be any simple isomorphism of L, .

Quantificational phenomena in English (and in all other natural languages)
are in fact so complex that there are still many problems in this area which
have not been solved. Indeed, the importance of Montague’s paper ‘The
Proper Treatment of Quantification in Ordinary English’ lies in part in the
fact that it represents an important advance in the direction of solving some
of these problems. In the fragment that we will next construct, we will
attempt to keep matters as simple as possible. For example, we will consider
only the quantifiers “every,” ‘“some,” and ‘“the,” and we will avoid entirely
the problems raised by mass nouns, plural count nouns, relative clauses, and a
host of other constructions. This fragment, however, will serve as an indica-
tion of one sort of approach to quantification in natural language, and in fact
it is quite similar to the framework which Montague adopted in a paper which
antedates PTQ, viz., ‘English as a Formal Language.’

If we compare simple English quantificational statements with their trans-
lations into predicate logic, we note some obvious differences:

(3-7)  a. Every student walks Vx[S(x) = W(x)]
b. Some student walks 3x[S(x) A W(x)]

While quantification in English is expressed by a determiner combined with a
common noun to form a noun phrase, the effect in predicate logic is achieved
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by two syntactically independent devices: varigbles, which play the same
syntactic role as names, and quantification rules which are later used to
form a new formula from a formula. In the English examples above, however,
nothing corresponding to a variable is evident. Nevertheless, there are at least
some noun phrases in English that do seem to function as variables do in
logic, namely certain pronouns, such as the underlined pronouns in (3-8):

(3-8) a. Every Englishman loves himself
b. Every Englishman loves his mother
c. Every Englishman believes that he is honorable

It has often been observed that from a semantic point of view at least, these
pronouns do not merely serve as syntactic substitutes for their antecedents,
for the sentences in (3-9) are not synonymous with their counterparts in (3-8):

(39) . a. Every Englishman loves every Englishman
b. Every Englishman loves every Englishman’s mother
c. Every Englishman thinks that every Englishman is honorable

Rather, we can paraphrase the meaning of (3-8a) correctly if we say that
sentence (3-10a) below is true for every value of v, that is an Englishman
(and similarly for (3-10b) and (3-10c)):

(3-10) a. v, loves v,
b. v, loves v,’s mother
c. v, thinks that v, is honorable

Since this kind of paraphrase is obviously reminiscent of our semantic clause
for Wx¢, these examples suggest the possibility that the sentences in (3-8)
could be produced in an English-like formal language by using the quasi-
sentences in (3-10) as an intermediate step, letting v, play the semantic role
of a variable and letting the semantic rule corresponding to the syntactic
conversion of (3-10) into (3-8) work like the semantic rule for Vx¢ in L,.
This syntactic “‘quantification” process that we will introduce into L,g will
have to do two things: the leftmost occurrence of the variable v, (or other
variable) will have to be replaced by a full noun phrase such as Every English-
man, while the subsequent occurrence of v, in the sentence must be turned
into a pronoun, such as himself, his, or he.

But now what of the simpler examples in (3-7)? Though we might treat
them in a syntactically simpler way (and in fact, we will eventually see
this possibility realized in the PTQ English syntax), note that this two-step
process needed for (3-8) would work just as well for these. That is, we can
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produce Every fish snores from v, snores by the same ‘“replacement”
operation (corresponding semantically to variable binding) as suggested
above, the only difference here being that no second occurrence of the
variable v; need be involved. Thus we will formulate our *“quantification”
rule for L,g as replacing the first occurrence of a variable by a noun phrase
containing a determiner every (or some or the) and at the same time replacing
all subsequent occurrences of that variable, if there are any, with a pronoun
(or, as we shall choose to do for simplicity in L,g, a “pronoun substitute”).

We specify the syntax of our English fragment L,g as a set of formation
rules rather than in the form of a phrase-structure grammar. The reader
will also note that the syntax of our new English-like fragment contains
““variables’ v,, v,, etc. as basic expressions of category V. These are of course
not really basic expressions of English, but they are essential to the approach
to quantification we will assume here, and it will do no harm to include them
so long as we distinguish, as we did in the case of L,, between formulas and
sentences. Thus, we will define the auxiliary concept of an “English formula”
and then define in terms of this the notion of “English sentence.”

In contrast to the distinction between formulas and sentences of L,,
however, English sentences will contain no occurrences of variables at all,
while they may occur in English formulas. This reflects the different way
in which variables will be treated in the English-like fragment — variables
do not become bound in the way that the occurrence of x, for example,
becomes bound when B(x) is quantified by Vx or 3Ix in L,; rather, the
variables of L,z will be replaced by lexical items of English. For example,
by formation rule B5 below, we can form from the English formula v,
snores and the common noun man the English sentence Every man snores.
Similarly, from the formula v, snores or v, is-boring and the common noun
man the same rule licenses the formation of the sentence Every man snores or
that man is-boring.

Here is the formal specification of the syntax of L,g:

1. Syntax of L\g

A. The basic expressions of L,g are as follows:

Hank, Liz, Sadie are constants of category V.

2, V2, V3, . . . are variables of category V.

. sleeps, snores, is-boring are constants of category V.

loves, hates, is-taller-than are constants of category V,.

. man, woman, fish are constants of category CN (common noun).

N o WK -



70 CHAPTER 3

6. it-is-not-the-case-that is a (logical) constant of category Neg.
7. and, or are (logical) constants of category Conj.

B. The formation rules of L,g are as follows:

Ifaisa Vyand Bisan N, thenafisa V.

. Ifais a ¥;and B is an N, then Ba is a For (formula).

. If ais a Neg and ¢ is a For, then a¢ is a For.

. If ais a Conj and ¢ and ¥ are For’s then ¢ay is a For.

. If ais a CN, u is a variable, and ¢ is a For containing at least one
occurrence of u, then ¢' is a For, where ¢' comes from ¢ by replacing
the left-most occurrence of u by every a and each subsequent occur-
rence of u by that a.

6. If a is a CN, u is a variable, and ¢ is a For containing at least one
occurrence of u, then ¢’ is a For, where ¢' comes from ¢ by replacing
the left-most occurrence of u by some a and each subsequent occur-
rence of u by that a.

7. If a is a CN, u is a variable, and ¢ is a For containing at least one
occurrence of u, then ¢’ is a For, where ¢' comes from ¢ by replacing
the left-most occurrence of u by the a and each subsequent occur-
rence of u by that a.

VNh W -

C. If ¢ is a For by the rules in A and B above and contains no instances of
any variable, then ¢ is an S (sentence).

Rules BS, 6, and 7, will, for example, allow us to form from the common
noun fish and the formula Hank loves vy the sentences Hank loves every
fish, Hank loves some fish, and Hank loves the fish, respectively. Note that
the correct interpretation of these rules requires careful attention to the
object language/meta-language distinction. In BS, for example, we are to
replace the left-most occurrence of the variable not by the sequence ‘“‘every
a” to produce, say, ‘“Hank loves every a’’; rather, what is substituted for the
variable occurrence is the sequence consisting of the word every followed
by whatever word it is in the object language that is taken as the value of a.

Note how different the derivations are in L,z of Hank snores and Every
man snores. The former is derived in the way indicated by the following
analysis tree:

Hank snores
— S

snores Hank

The derivation of the other sentence may be displayed in the following fashion:
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Every man snores
man v, snores
snores v,

The grammar of L,z has no category of noun phrases containing both Hank
and every man. Indeed every man is not a phrase at all in L,g! This is
obviously a defect in our syntactic analysis of the language. Our reason for
writing the grammar this way will become obvious when we state the seman-
tic rules corresponding to syntactic rules B1-7.

Our syntax here follows Montague in using that plus another instance of
the common noun to replace all but the first occurrence of a variable. This is
a compromise which avoids the problems connected with personal vs.
reflexive pronouns and with gender agreement. Thus, our fragment generates
from man and v, loves v, the rather unnatural sentence Every man loves that
man instead of Every man loves himself, and similarly from man and Hank
loves v, or Liz loves v, we derive Hank loves some man or Liz loves that man
rather than Hank loves some man or Liz loves him. In this connection, we
should also point out another deficiency in our fragment vis-a-vis ordinary
English. By our syntax, the sentence Every man loves Hank and Liz loves
that man can only arise from a formula such as v, loves Hank and Liz loves
v (by rule BS). There is no possibility that the phrase that man could arise,
as it were, as an epithet for Hank. Indeed, in our fragment we cannot generate
sentences such as Hank snores and that man is-boring at all.

A comment is also in order concerning one peculiar formal property
of our syntax: every sentence containing every, some, or the will have infini-
tely many distinct syntactic analyses. Every man sleeps, for example, could
have been formed by rule BS out of man and any one of the formulas v,
sleeps, vy sleeps, v, sleeps, etc., etc. This may seem worrisome if one is
accustomed to thinking that distinct syntactic derivations must receive
distinct semantic interpretations, but as we shall see, this is not so in the
semantics we give for L,g. The sentence Every man sleeps will not turn out
to be infinitely many ways ambiguous; it will turn out not to be even two
ways ambiguous semantically. Thus, this proliferation of syntactic derivations
need not bother us if we are willing to accept it as a harmless and trivial
formal property of our system.

There will, however, arise sentences which will have genuinely nonequiva-
lent syntactic derivations and to which we will want to assign semantic
values in more than one way. For example, the formula v, loves v, can
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give rise to the sentence Some man loves every woman in two essentially
different ways. First, by rule BS we could form v, loves every woman and
then by rule B6 form Some man loves every woman, or else we could apply
these rules in the opposite order, forming first Some man loves v, and then
the sentence in question. As we.will see, the semantics will specify truth
conditions for this sentence in two distinct ways corresponding to the two
derivations just mentioned. The truth conditions will state that for the
sentence derived in the first way it is true just in case there is someone who
is a man and such that he loves every woman. The truth conditions for the
sentence when derived in the second way will correspond to the other ‘“‘read-
ing” in which for each woman there is some man or other, not necessarily the
same man for all women, who loves her. Thus, our fragment provides the
means for capturing, at least for some sentences, differences in meaning
that depend on the relative scope of quantifiers. We note also that our frag-
ment allows nonequivalent derivations for sentences involving at least two
connectives, just as the syntax of Log did; e.g., Sadie sleeps or Liz is-boring
and Hank snores.

Thus in L, as in Log we will need to assign semantic values to analysis
trees of the kind illustrated above. These structures, but not the expressions
of which the trees are structural descriptions, contain enough information
about syntactic derivations to permit the semantic rules to retrace them.

2. Semantics of L, g

It is clear from the syntactic form of sentences containing quantifiers in
L,g that the truth conditions will have to be given in a form different from
those for the quantifiers V and 3 in L,. For example, in determining the
truth value of a sentence such as Every man sleeps it will not do to say that it
is true just in case the formula v, sleeps is true for all assignments of values
to the variable v, . That would give us the truth conditions for something like
Everyone sleeps (i.e., every individual in the universe of discourse sleeps).
What we want, rather, is something like “v, sleeps is true for every assignment
of an individual to the variable v, such that that individual is a man.” The
semantic rules below thus treat quantification as “restricted’’ to a sub-
domain which is indicated by the common noun with which the quantifier
is associated. This, in turn, indicates the sort of semantic values we will
want to assign to common nouns, viz., a function from individuals to truth
values. This characteristic function of some set will thus represent the set
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of men, women, fish or whatever, just as the same sort of characteristic function
indicates the set of snorers, sleepers, etc.

Here is the formal specification of the semantics of L,g:

A model for L,g is an ordered pair (4, F) such that 4 is a non-empty
set and F is a function assigning a semantic value to each non-ogical constant
and which assigns to it-is-not-the-case-that, and, and or the semantic values
appropriate to the logical connectives 1, A, and v respectively. The domains
of possible semantic values for expressions of each syntactic category are
given in the following table:

Category Set of Possible Semantic Values

N A

For {1, 0}

V; {1,044
CN {1,044

Ve {1,094

A value assignment g is a function assigning to each variable a semantic value
of the appropriate sort (here, as in L,, assigning an individual to each variable).

A. Semantic values of basic expressions:
1. If u is a variable, then [u] ™ ¢ = g(u).
2. If ais a non-logical constant, then [a] M.¢ = Fa).
3. If ais a logical constant (member of Neg or Conj) then [a]"" is as

follows:
I[It-is-not-the-case-thatllM" =1{1-0
0-1
[and]™*= |, [1 >1] for1™* =1, [1~1
0-0 0-1
1-0] 1-1
O*ko_ “k»]

B. Truth conditions of formulas of L,g relative to M and g:
1. If aisa V, and Bis an N, then [oB]™ ¢ = [«]™ (18] ™ ¢).
2. If aisa V; and B is an N, then [Ba]™ ¢ = [a]™- #([8])™ *).
3. If ais a Neg and ¢ is a For, then [a¢]}™# = [a]™([¢]™%¥).
4.1f a is a Conj and ¢ and Y are For's, then [pay]*? =
[[ed™ 23" )MV 1™ ).

S. If ais a CN, u is a variable, and ¢ is a For containing at least one
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occurrence of u, then for ¢ as in syntactic rule BS, [¢'])™ ¢ =1 iff
for all value assignments g¢ such that [a] ™ () = 1, [} M- fu= 1.

6. If ais a CN, u is a variable, and ¢ is a For contammg at least one
occurrence of u, then for ¢’ as in syntactic rule B6, [¢'}M- ¢ = 1 iff
for some value assignment g¢ such that [a]¥-¢(e) = 1, [¢] M %= 1.

7. If a is a CN, u is a variable, and ¢ is a For containing at least one
occurrence of u, then for ¢’ as in syntactic rule B7, [¢']™ ¢ = 1 iff
there is exactly one e in A such that [a}™: ?(e) = 1, and furthermore

(o)™ i =1.

As already noted, we need really to assign semantic values to analysis
trees rather than directly to strings of basic expressions. The reader should
understand the rules of 4 and B in that way. It is only to avoid the distrac-
tion of fussy details that we have formulated them in an oversimplified
fashion. The same remark applies to C.

C. Truth conditions for sentences of L, relative to M:
1. For any sentence ¢ of L,g, [¢]™ =1 if for all value assignments g,

o)™ F=1.
2. For I:ny sentence ¢ of Lg, |[¢IM = 0 if for all value assignments g
[s]* =0

Let us now illustrate the workings of these rules by choosing a particular
model and determining the semantic values of some sentences with respect to
that model. We choose A4 as for Log in the preceding chapter, i.e., 4 = {Anwar
Sadat, Queen Elizabeth II, Henry Kissinger}. Further, we let F assign to all
the non-logical constants of L,z which are in Lyog just the same values that
we chose for those constants in model M, of the preceding chapter, i.e.,
F(Hank) = Henry Kissinger, etc. (pp. 26-33). To complete the assignment of
values to the constants of L, we let the values of man, woman, and fish be
as follows:

(3-8) [man}*¥= [Anwar Sadat — - l'
Queen Elizabeth 11
| Henry Kissinger 7< 0_
(3-9) [woman)™¥ = [ Anwar Sadat l'
Queen EhzabM 0
| Henry Kissinger —
(3-10) [fish]™?= [ Anwar Sadat 17
Queen Elizabeth 11 0
| Henry Kissinger ]
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Let us also take as the value assignment g the following function:

(3-11) g=] v, = Anwar Sadat
v, > Henry Kissinger
v3 = Queen Elizabeth

where the dots indicate some completion of the function whose exact nature
we need not be concerned with. For concreteness, let us suppose that all
other variables are assigned the value Queen Elizabeth II.

There is nothing new in sentences of L,g that belong to Log also: their
semantic values will be just as before. Therefore, let us consider straight
off the semantic value of the sentence Every man snores with respect to this
model and value assignment. Recall that syntactically this sentence is gene-
rated by first combining a variable, say v,, with the intransitive verb snores
to give the formula v, snores. Then by syntactic rule BS the common noun
man, the variable v,, and the formula v, snores combine to yield Every man
snores. Our semantic computations will then parallel these steps. First, seman-
tic rule B2 says that [v, snores}™-¢ = [snores}™ ¥([v, }™ ®); that is, the func-
tion given in (2-13) applied at the argument Henry Kissinger, the latter being
g(»3). Thus, [v, snores}™ ¥ = 0. Next we determine the semantic value of
Every man snores (with respect to M and g) by semantic rule BS on the basis
of the semantic values of man, v,, and v, snores. The semantic value of man
with respect to M and any g’ is given in (3-8) above. To apply semantic rule
BS we need first to find all e such that [man}™ %)= 1, that is, all the
individuals in A who are men according to this model and value assignment.
By (3-8) we see that this is just Anwar Sadat and Henry Kissinger. Thus, we
are to construct all value assignments which are like g except that the values
assigned to v, are to range over the set {Anwar Sadat, Henry Kissinger}. Since
g as it happens to have been chosen already assigns v, the value Henry
Kissinger, we have only one other assignment to consider, namely:

(3-12) g‘:‘z“"’" Sadat _ [ — Anwar Sadat
v, = Anwar Sadat
v3 = Queen Elizabeth 11
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(where the dots indicate the same completion as for g). Now the rule tells
us that Every man snores receives the value 1 iff v, snores receives the value
1 under both the above value assignments. Thus we see that we could have
actually stopped after examining the value assignment g itself, since it makes
v, snores false, and this would be sufficient for us to conclude that Every
man snores is false (with respect to this model and value assignment). Since
Every man snores contains no instances of free variables, it will be false in
this model no matter which value assignment we start with. Thus, by rule
C2 above, [ Every man snores]™ = 0.

The reason we distorted English syntactic structure so much in the
grammar of L,g was to allow ourselves to formulate semantic rules B.5-7.
If we had generated a category of noun phrases including every man, some
man, Hank, etc., then we would have found ourselves in a bind when trying
to assign a suitable denotation to some man, for example. The requisite
semantic value cannot be an individual. To see this, note that if it were, then
what individual it is would have to depend only on the model and not on
a value assignment - since some man does not contain any free variables.
But then Some man snores and it-is-not-the-case-that some man snores
(cf. the more colloquial “Some man snores and some doesn’t snore’’) would
have to be false in any model — for the same reason that Hank snores and
it-is-not-the-case-that Hank snores must be. Nor would it help to assign a
set of individuals as the semantic value of some man. An adequate semantic
value will be developed in the next chapter. In the meantime, we have circum-
vented this particular semantic pitfall by providing a strange syntactic
structure — merely for didactic purposes. It would be a good idea for the
reader to verify that the problem sentence, Some man snores and it-is-not-the-
case-that some man snores, is true (on one derivation) in the model under
consideration.

In determining the semantic value of a quantified sentence, given a parti-
cular model and the value assignment, there is no need of course to go through
such excruciating detail in practice as we did above. One can instead run
quickly through a chain of reasoning like the following: What is the value of
man according to the model: Answer: {Anwar Sadat, Henry Kissinger}.
Are all the members of this set in the value of snores? Answer: No. Therefore,
Every man snores is false in this model. Similarly, the truth value of Some
man snores is easily seen to be true by determining that at least one of the
members of the set {Anwar Sadat, Henry Kissinger}, namely Anwar Sadat, is
in the semantic value of snores.

Now consider the example Every fish snores. According to the model we
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have chosen, there are no fish in the universe of discourse (the value of fish is
the characteristic function of the null set). Thus, in applying semantic rule BS,
there will be no value assignments g: such that [ fish[¥%(e) = 1. Thus, Every
fish snores will be vacuously true (with respect to this model) since there are
no e for which [v, snores]™ %, must be true. Alternatively, one can reason as
follows: Are all the members of the set which is the value of fish also in the
semantic value of snores? Answer: Yes, because there are no members in the
former set.

Note, however, that semantic rule B6 requires for the truth of a sentence
such as Some fish snores that there be some value assignment g such that
[fish]™ %(e) = 1, etc, and since there is no such assignment, Some fish
snores will receive the value O (in this model). This result and the one just
mentioned are in accord with one traditional way of construing the meanings
of English quantifiers; that is, “Every X Y’s’’ does not entail the existence
of any individuals who are X, while “Some X Y’s” does. It is a consequence
of this way of looking at these quantifiers that a sentence of the form *“Every
X Y’s” does not logically imply “Some X Y’s’ since in case there are no
individuals who are X, the former will be true but the latter false. In such
a case also a sentence of the form ‘“It-is-not-the-case-that every X Y’s” will
be false. On an alternative view, “Every X Y’s” is taken to be false if there
are no individuals who are X. Then such a sentence would logically imply
“Some X Y’s”, and the sentence “It-is-not-the-case-that every X Y’s”’ would
be true. Another standard approach is to postulate a third value which
is neither truth nor falsity and say that “Every X Y's” has this third value
(or equivalently, has no truth at all) when there is nothing in the semantic
value of X; in some views one says the same of “It-is-not-the-case-that-every
X Y's.” A discussion of all the alternatives would entangle us in various
intricacies surrounding the notion (or notions) of *presupposition,” and
that would lead us too far afield at this point. For some references, see
Chapter 9.

Similar considerations arise, however, in connection with the treatment
of the in semantic rule B7. A sentence such as The man snores receives the
truth value 1 just in case there is exactly one man and that man snores
(with respect to the model and value assignment); otherwise, The man snores
is false. Thus in the model chosen for our illustration, this sentence is in
fact false since there are exactly two men. Similarly, The fish snores is false
inasmuch as there is not, according to the model, exactly one fish who
snores, there being no fish at all. We have thus implicitly adopted in seman-
tic rule B7 Russell’s theory of definite descriptions (Russell, 1905), according
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to which a sentence of the form “The X Y’s” logically implies that there
is exactly one individual who is X and that individual Y’s. Thus, if there
is not exactly one individual who is X, or if there is, but that individual does
not Y, then “The X Y’s” is false. An alternative view — the one adopted
for example, in (Strawson, 1950) - is that “The X Y’s’’ has no truth value in
case there is not exactly one individual who is X. In giving the semantic rules
as we have, we do not wish to be regarded as espousing a particular point of
view on these rather complex issues. We have simply chosen one alternative
for the sake of specificity; this alternative happens also to be the one adopted
by Montague in PTQ, so the reader will be on a bit more familiar ground
when we take up that system in Chapter 7.

PROBLEM (3-5): Determine the truth value of each of the following
sentences according to the assumed model for L,g. Which of them, if any,
have truth values that differ according to the order in which syntactic rules
have been applied?

Liz loves every man.

. The woman hates Hank.

Some man sleeps and every woinan is-boring.

. Every man is-taller-than that man.
It-is-not-the-case-that some woman hates that woman.

® a0 o

In order to show that a sentence such as Some man loves every woman
is, according to our system, a case of genuine ambiguity, we will have to
choose a slightly more populous model. Let us add to the domain of dis-
course the individual Jacqueline Onassis, and let us choose the denotations
of man, woman and loves in such a way that the men are, as before, just
Henry Kissinger and Anwar Sadat, the women are Queen Elizabeth 1l and
Jacqueline Onassis, and the semantic value of loves is now given (as shorthand
for the appropriate function) as the following set of ordered pairs:

(3-13) [loves] = {(Henry Kissinger, Jacqueline On=ssis), (Anwar Sadat,
Queen Elizabeth ID}

(Recall that in this representation the first member of the ordered pair is
taken as standing in the relation to the second member).

Now let us consider a syntactic derivation of the sentence Some man
loves every woman which begins with v, and the transitive verb loves. We
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assume that the value assignment g is as in (3-11). Thus loves v, will receive
the null set as semantic value (actually the characteristic function of this set)
since g(v;) = Anwar Sadat and in this model no one loves Anwar Sadat. Next,
we form v, loves v;, and this receives the truth value 0, since g(%;) = Henry
Kissinger and he does not love Anwar Sadat. We are now ready to insert the
quantified expressions and show that the resulting sentence is assigned a
different truth value depending on the order in which the phrases are
inserted.

From man v,, and v, loves v, we form by syntactic rule B6 the formula
Some man loves v, . This is assigned the truth value O since, according to our
model and the value assignment g, there is no man who loves Anwar Sadat.
Next, from woman, v,, and Some man loves v, we form Some man loves
every woman. To determine the truth value of this, we must find the truth
value of Some man loves v, for every assignment in which the value of v,
is a woman. When v, is assigned the value Queen Elizabeth 11, Some man
loves v, is true, since, by semantic rule B6, we determine that v, loves v,
is true for at least one value of v, which is a man, namely, Anwar Sadat.
When v, is assigned the value Jacqueline Onassis, Some man loves v, is true,
since v, loves v, is true when v, takes on the value Henry Kissinger, who
is a man. Thus, the semantic rules in connection with this syntactic deriva-
tin of the sentence Some man loves every woman assign the sentence the
semantic value 1. Note that the situation that was necessary to ensure this
result can be described as ‘“for each woman there is some man or other
who loves her.”

Now consider the different syntactic derivation in which we first form
from woman v,, and v, loves v, the formula v, loves every woman by
syntactic rule BS. This is assigned the value O since Henry Kissinger does
not love every woman; specifically, he doesn’t love Queen Elizabeth II.
Now we form Some man loves every woman from man, v,, and v, loves
every woman by syntactic rule B6. Here we must let v, take on successive
values from the set of men and determine whether for any of these indivi-
duals it is true that he loves every woman. We already know that it is not
true of Henry Kissinger, and when we let the value of v, be Anwar Sadat,
we see that it is not true of him either (he doesn’t love Jacqueline Onassis).
Therefore, on this derivation the sentence Some man loves every woman
is false, and the assumed situation that led to this being so can be expressed
as “there is no man such that he loves every woman.”

The sentence in question is intuitively ambiguous (at least for most speak-
ers of English) in just the way countenanced by our semantics, so we might
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justifiably find some satisfaction in this approach to quantification in
English. Of course it remains to be seen whether our good fortune will hold
up as more complex syntactic constructions are added to the fragment.
And one may very well wonder whether we should have to generate the
sentence in two syntactically nonequivalent ways, as we did in order to
provide a basis for the semantic ambiguity.? We will return to some of these
questions in connection with our discussion of PTQ in Chapter 7.

A final point. In Chapters 2 and 3 we have repeatedly stressed that model-
theoretic semantics proceeds by associating real-world objects with linguis-
tic expressions. Qur purpose has been to emphasize the important point that
model theory capitalizes on the use of language to talk about things and
incorporates the potential for this in a fundamental way. This characteristic
of model theory tempts some people to think that the theory embodies
too simplistic a notion of the way actual users of language connect expres-
sions with real-world objects. Let us take this opportunity to head off such
misapprehensions.

We illustrate one form of the error by formulating an objection some-
one might make. One might take the position that every mammal suckles
its young could not possibly mean the truly universal proposition we have
analyzed it as meaning, since

(a) human beings can mentally grasp its meaning;

(b) people can, moreover, have adequate grounds for asserting the

sentence; but

(c) they may very well not know of the existence of some mammal

and then could not be talking about mammals they were not aware of.
The fallacy in the objection lies in the falsity of point (c), which is clearly
not a logical consequence of (a) and (b). Human beings certainly can grasp
the meaning of universal sentences, and sometimes have adequate grounds
for asserting them. But, ‘‘adequate” does not mean infallible here anymore
than it does elsewhere. If there are mammals a speaker is unaware of, his
ignorance of their existence does not excuse him of responsibility in case
some of them turn out not to suckle their young - any more than if he were
mistaken about the feeding habits of mammals he knew existed. If someone
points out mammals he didn’t know of which do not suckle their young,
he would have to admit he had made a mistake and withdraw his assertion.
This shows that this statement applies to all mammals, not only the ones
he knew about at the time he asserted it. He could afterwards maintain
at best that every mammal in a restricted set suckles its young, and only
if the restriction in his statement excluded the nonsuckling mammals he



FIRST-ORDER PREDICATE LOGIC 81

has learned of could he have adequate grounds for this assertion. Thus it is
correct to maintain that every makes truly universal statements. The mistake
our objector made was in thinking that adequate grounds for asserting a
sentence suffice to insure that the sentence is true.

Our human imperfections in correctly making the connection of our
language to the world do not in any way negate the fact that our under-
standing of many words and phrases is grounded in exactly that connection.
Precisely because this is so, it is appropriate to criticize speakers when they
try to make the connections and do so incorrectly. But also because we
intend to use language in terms of its real connections, it is possible for
us to employ it in an entirely mental way when that is useful. Language
can help us think about what it would be like if things were not as they
really are. It can help us represent how things might be or might have been.
This is important not only in every day activities like planning to make
things different, but also in giving scientific explanation of the way things
in fact are. Such “detached” uses of language do not reveal an inadequacy
of model-theoretic semantics. If the world were as it is imagined, expressions
would connect to objects just as the model has them do. Thus these imagi-
native uses of language actually illustrate a strength of model-theoretic
semantics rather than a weakness.

EXERCISES

1. Reformulate the syntax and semantics of L, , replacing the basic expression 71, A, V,
etc. by the “Polish” connectives N, K, A, etc., treated as basic expressions (see Exercise
3, Chapter 2).

2. Show that in syntactic rules BS, 6, and 7 and also in the corresponding semantic
rules for L,g the condition that ¢ contain at least one occurrence of the variable u is
essential in order to avoid absurd results for sentences such as Hank snores which contain
no quantifiers.

3. What difficulties arise in attempting to specify the syntax of L, by means of
a context-free phrase-structure grammar? Readers with sufficient background in mathe-
matical linguistics may want to construct a proof that no context-free phrase-structure
grammar generating this language is possible.

4. Construct a variant of the syntax and semantics of L,g in which names as well
as quantifiers + common ncuns can be substituted for variables. For example, from
Hank and v, snores one could form Hank snores (This sentence will also be generated
in the usual way by syntactic rule B2). Write the syntactic rules in such a way that the
phrase that person is substituted for all occurrences of a given variable other than the
left-most, i.e., Hank + v, loves v, yields Hank loves that person, and Hank + v, snores or
Liz loves v, yields Hank snores or Liz loves that person. Arrange the semantics in such a
way that Hank snores has the same truth conditions under either derivation.
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5. Show that under the syntax and semantics given for L,g the sentences Every
man loves every man and Every man loves that man have different truth conditions,
and further, that the former logically entails the latter.

6. Show that under the syntax and semantics given for L, the sentence Every
man sleeps or that man snores does not logically entail the sentence Every man sleeps
or every man snores.

NOTES

! It is a technical consequence of this definition, C., that even certain formulas with
free variables will count as true (in the unrelativized sense), namely those in which the
formula comes out true no matter what values are assigned to its free variable(s). In
other words, a formula with free variables that comes out true by this definition is one
that would also be true just in case enough universal quantificrs were prefixed to it to
bind all its free variables. Montague in fact exploited this technical consequence in PTQ
by omitting universal quantifiers from some of his ‘“meaning postulates’: the intent is
clearly that these postulates are to be read as if these additional universal quantifiers
were present.

In his ‘Universal Grammar,” however, Montague used the definition of true relative to
a value assignment g in a different way. As we will explain in Chapter 8, the function g is
there thought of as serving the additional purpose of supplying values for deictic pro-
nouns (which are treated as free variables). That is, a formula like He walks (i.e. x walks)
is considered now true, now false, depending on the context in which it is used (i.e. de-
pending on which particular g is chosen as “context’). The interpretation of bound
variables is unaffected by this new view of g. For a detailed analysis of non-anaphoric
pronouns in English based on this idea, see Cooper (1979a).
? Linguists who consider syntax autonomous find it highly suspect to force syntactic
rules to produce ambiguities that are motivated solely by semantic considerations. This
particular problem about L, is not a result of the already noted syntactic inadequacy in
that language of having no category of noun phrases; it will persist even after that has
been remedied. The problem we face here is that, unlike the case of Sadie sleeps or Liz
is-boring and Hank snores, there are no syntactic or prosodic correlates of the evident
semantic ambiguity in the sentence. Montague, like the Generative Semanticists, chose to
set up multiple syntactic representations anyway in such cases and to retain the policy
of assigning just one semantic value to each syntactic representation. As Cooper (1975)
demonstrated, however, there is an alternative compatible with the Principle of Compo-
sitionality. One can have a single syntactic representation of Some man loves every
woman and assign as the semantic value of each phrase a set of things very like the
semantic values Montague assigns. Then the sentence turns out semantically ambigous
in the appropriate way, while being unambiguous syntactically.



