Reduplicated distributivity in Mandinka

Triple-A 10
Potsdam, Germany, June 2023
Ousmane Cisse \& Elizabeth Coppock
Boston University

Part 1: Introduction

Part 2: One-by-one effects

Part 3: Exhaustivity effects
Part 4: Analysis

Part 1

Introduction

Introduction

Reduplicated nouns are sometimes understood universally (Moravcik 1976):


```
alaalè 'every enemy' (alę 'enemy') (Bamgbose 1966:151)
TAGALOG: araw'áraw 'every day' (araw 'day') (Blake 1917: 425ff)
MANDARIN: renren 'everybody' (ren 'man') (Chao 1968: 202)
TZELTAL: hi`hi`tik 'very much sand' (hi? 'sand')
    nanatik 'very many houses' (na 'house')(Berimin 1963:212)
```

Gil (1995): "Although at first blush reduplication appears to bear the denotation of distributive-key universal quantifier, closer inspection reveals subtle distinctions."

Introduction

Binominal each distributes a share over a key:
(1) The kids carried five balloons each.

Mnemonic: Share per Key (Gil, 2013)

Introduction

Korean -ssik behaves much like binominal each:
(2) ai-tul -i [phwungsen-hana -ssik-ul] sa-ess-ta

(3) But also has event-key readings:
na-nun phwung-hana -ssik-ul sa-ess-ta I-TOP balloon-one-SSIK-ACC bought
(Choe 1987)

Introduction

Event-key readings for reduplicated numerals in Telugu:

ii pilla-lu	renDu renDu kootu-lu-ni	cuus-ee-ru
these kid-PL	22 monkey-PL-ACC	see-PAST-3P

a. ... each saw 2 monkeys.
b. ... saw 2 monkeys each time.
c. ... saw 2 monkeys in each location.

Participant key
Temporal key
Spatial key
(Balusu, 2006)
share
U

Introduction

Event-key readings for reduplicated numerals in Telugu:
(5)

```
renDu renDu kootu-lu egir-i-nyiyyi
22 monkey-PL jump-PAST-3PL
lit. ' 22 monkeys jumped'
```

(6) Raamu rendu renDu kooto-lu-ni cuus-ee-Du

Ram 22 monkey-PL-ACC see-PAST-2PL
lit. 'Ram saw 22 monkeys'
a. ... each time.
b. ... in each location.

> Temporal key Spatial key
share

Introduction

Event-key readings for reduplicated numerals in Telugu:

(7) renDu renDu kootu-lu egir-i-nyiyyi 22 monkey-PL jump-PAST-3PL
lit. ' 22 monkeys jumped'
(8) Raamu rendu renDu kooto-lu-ni cuus-ee-Du

Ram 22 monkey-PL-ACC see-PAST-2PL
lit. 'Ram saw 22 monkeys'

a. ... each time.
b. ... in each location.
Temporal key Spatial key
(Balusu 2006)

Introduction

(24) Hebrew
a. ha?anašim saћvu mizvada yom yom the-man-PL:M carry-PAST-3:PL suitcase day day
b. haPanašim saћvu mizvada mizvada the-man-PL:M carry-PAST-3:PL suitcase suitcase
c. haPanašim saћvu et hamizvadot aћat aћat the-man-PL:M carry-PAST-3:PL
d. ha?anašim saћvu et hamizvadot šaloš saloš the-man-PL:M carry-PAST-3:PL ACC the-suitcase-PL:F three-F three-F

Gil (1995): "(24b) is nearly synonymous with (24c)... Thus, in (24c) and (24d), reduplication marks the numeral as distributive-share, and selects the verb as distributive-key."

Introduction

Gil (1995):
"From an iconic perspective, it is of course more natural for reduplication to mark distributive-shares than distributive-keys; however, it is also natural for reduplication to express the notion of universal quantification."
"Whether there exist bona fide instances of reduplication with the interpretation of distributive-key universal quantifier must remain open for future investigation."

Introduction

Gil's Conjecture*

Distributivity markers that are reduplicated (numerals or nouns) always mark the share in a distributive relation.
*granted, we are reading between the lines here

Introduction

- As spoken in: Senegal, The Gambia, Guinea Bissau
- Population: 888,000 in Senegal (2017), growing
- Classification:

Niger-Congo > Mande

- Alt. Names: Mande, Manding, Mandingo, Mandingue, Mandinque, Socé

Introduction

X-woo-X construction

In Mandinka, reduplicating a noun or a numeral by interposing the morpheme -woo- gives rise to a distributive reading.
(9) Musu-woo-musu ye kini taboo noo le woman-DIST-woman PRED rice cooking know PERF 'Each woman knows how to cook rice.'
(10) Binta ye mangu saamu kilin-woo-kilin saŋ ne Binta PRED mango pile one-DIST-one buy PERF
'Binta bought the mangoes one by one / each mango.'
It's natural to translate X-woo- X as each (which suggests X is the key).
But is X really the share in an event-key distributive relation (à la Gil)?

Introduction

Participants

Phase I: 10 native speakers of Mandinka from Ziguinchor

- 5 men, 5 women
- 20-50+ years old
- WhatsApp conference calls in groups of two or three (2 groups of 2,2 groups of 3)

Phase II: 12 native speakers of Mandinka from Ziguinchor

- 9 men, 3 women
- 20-50+ years old
- Zoom video calls with individual participants

Part 2

One-by-one effects

One-by-one effects

Suppose that in the X -woo- X construction, X is the distributive share.

Then there are multiple subevents, one per instance of X.

Prediction:

X-woo-X should be more felicitous as a way of describing scenarios where the X's are affected one by one, rather than all at once.

One-by-one effects

All-at-once scenario

One-by-one scenario

Phase I participants were asked for acceptability judgments wrt both contexts.

One-by-one effects

All-at-once scenario

One-by-one scenario

Fode ye siise-e kili-woo-kili samba le
Fode PRED chicken egg-DIST-egg carry PERF
'Fode carried each chicken egg' (X-woo-X)
Fode ye siise-e kil-o-lu sambale.
'Fode carried the chicken eggs' (DEF PL)
Fode ye siise-e kil-o-lu bee samba le
'Fode carried all the chicken eggs' (ALL)

One-by-one effects

All-at-once scenario

$$
\mathrm{A} \quad \mathrm{~B}
$$

Fode ye siise-e kili-woo-kili samba le
Fode PRED chicken egg-DIST-egg carry PERF
'Fode carried each chicken egg' (X-woo-X)
Fode ye siise-e kil-o-lu sambale.
'Fode carried the chicken eggs' (DEF PL)
Fode ye siise-e kil-o-lu bee samba le
'Fode carried all the chicken eggs' (ALL)

Infelicitous
unless different kinds

Good

Good
best sentence for context

One-by-one effects

One-by-one scenario

Fode ye siise-e kili-woo-kili samba le
Fode PRED chicken egg-DIST-egg carry PERF
'Fode carried each chicken egg' (X-woo-X)
Fode ye siise-e kil-o-lu samba le.
'Fode carried the chicken eggs' (DEF PL)
Fode ye siise-e kil-o-lu bee samba le
'Fode carried all the chicken eggs' (ALL)

Good
best sentence for context

Infelicitous

Infelicitous

One-by-one effects

One-by-one scenario

Fode ye siise-e kili-woo-kili samba le
Fode PRED chicken egg-DIST-egg carry PERF
'Fode carried each chicken egg' (X-woo-X)
Fode ye siise-e kil-o-lu samba le.
'Fode carried the chicken eggs' (DEF PL)
Fode ye siise-e kil-o-lu bee sambale
'Fode carried all the chicken eggs' (ALL)

Infelicitous
unless different kinds

Good

Good
best sentence for context

Good best sentence for context Infelicitous

Infelicitous

One-by-one effects

More evidence that X-woo-X marks the share in an event-key construction:
Phase II participants were asked about the difference between:
(11) Da m baamaa la kitaabu-woo-kitaabu jindi duuma 1.SG my mother GEN book-DISTR-book carry down 'I carried down each one of my mother's books.'
(12) Da m baamaa la kitaabo-o-lu bee jindi duuma. 1.SG my mother GEN book-DET-PL all carry down 'I carried down all of my mother's books.'

Several explained the difference in terms of kiliŋ kiliŋ 'one one'.

Ñig fraaz foloo, i ye i kiliy kiliy jindi le, this sentence first 2P.SG PRED 3P.PL one one carry_down PERF ñiŋdo, i ye i bee le jindi non na.
this some, 2P.SG PRED 3P.PL all FOC carry_down together OBL
'This one you carried them down one by one, this other one, you carried them down all together.'

One-by-one effects

Interim conclusion

Gil's Conjecture is right for Mandinka:
share

X-woo-X reduplication marks the share (that is, X is the share)
in an event-key distributive relation.

One-by-one effects

Interim conclusion

Gil's Conjecture is right for Mandinka:
X-woo-X reduplication marks the share (that is, X is the share)
in an an event-key distributive relation.

But that alone would not

 predict exhaustivity wrt X.

Part 3

Exhaustivity effects

Exhaustivity effects

Exhaustivity experiment

Sentence type
Exhaustive Display
Non-Exhaustive Display

Subject

Town-woo-town has a doctor/teacher
Object
The town has worker-woo-worker

Both

Town-woo-town has worker-woo-worker

Phase II participants were asked 2 questions about the same sentence type (subject, object, or both), one for each display type (exhaustive vs. non-exhaustive), at the beginning of the session.

Exhaustivity effects

Example stimulus

Saatee-woo-saatee ye jararlaa soto le. [Town-woo-town has a doctor]

- Tonya lon [true]
- Tonya nten [not true]
- A manke tonya ti, a manke fanya ti [not true, not a lie]

Cf. Bosni'c et al. (2021)
on Serbian po

Exhaustivity effects

Subject position, exhaustive display

(13) Saatee-woo-saatee ye jararlaa soto le
town-DIST-town PRED doctor have PERF

4/4
'Every town has a doctor'

Exhaustivity effects

Subject position, non-exhaustive display

(14) Saatee-woo-saatee ye karandirlaa soto le

False
town-DIST-town PRED teacher
'Every town has a teacher'

Exhaustivity effects

Object position, exhaustive display

(15) Saate-e ye dookuulaa-woo-dookulaa soto le town-DET PRED worker-DIST-worker have PERF

Exhaustivity effects

Object position, non-exhaustive display

(15) Saate-e ye dookuulaa-woo-dookulaa soto le False town-DET PRED worker-DIST-worker have PERF
(4/4)
'The town has every (kind of) worker'

Exhaustivity effects

X-woo-X in both subject and object positions, exhaustive display

(16) Saatee-woo-saatee ye dookuulaa-woo-dookulaa soto le town-DIST-town PRED worker-DIST-worker 'Every town has every (kind of) worker'

Exhaustivity effects

X-woo-X in both subject and object positions, non-exhaustive display

(16) Saatee-woo-saatee ye dookuulaa-woo-dookulaa soto le town-DIST-town PRED worker-DIST-worker 'Every town has every (kind of) worker'

Exhaustivity effects

Exhaustivity experiment

| Sentence type | Exhaustive Display | Non-Exhaustive Display |
| :--- | :---: | :---: | :---: |
| Subject
 Town-woo-town has a doctor/teacher | True | False |
| Object
 The town has worker-woo-worker | True | False |
| Both
 Town-woo-town has worker-woo-worker | True | False |

Conclusion: X -woo- X is always interpreted exhaustively wrt X .

Part 4

Analysis

Analysis

(9) Moo-woo-moo naata le. person-DIST-person come PERF 'Everybody came'

Pure share-marker analysis:

(17) $\lambda \mathrm{e} . \mathrm{e} \in * \lambda \mathrm{e}^{\prime}\left[\right.$ person $\left.\left(\operatorname{agent}\left(\mathrm{e}^{\prime}\right)\right) \wedge \operatorname{come}\left(\mathrm{e}^{\prime}\right)\right]$
(18) -woo- $\leadsto \lambda \mathrm{P} \lambda \theta \lambda V \lambda \mathrm{e} . \mathrm{e} \in * \lambda \mathrm{e}^{\prime}\left[\mathrm{P}\left(\theta\left(\mathrm{e}^{\prime}\right)\right) \wedge \mathrm{V}\left(\mathrm{e}^{\prime}\right)\right]$

Analysis

(9) Moo-woo-moo naata le. person-DIST-person come PERF 'Everybody came'

Hybrid share/key analysis:

(19) $\lambda \mathrm{e}\left[\mathrm{e} \in * \lambda \mathrm{e}^{\prime}\left[\right.\right.$ person(agent $\left.\left.\left(\mathrm{e}^{\prime}\right)\right) \wedge \operatorname{come}\left(\mathrm{e}^{\prime}\right)\right] \wedge \oplus$ person $\left.=\operatorname{agent}(\mathrm{e})\right]^{39}$
(20) -woo- $\leadsto \lambda P \lambda \theta \lambda V \lambda \mathrm{e}\left[\mathrm{e} \in * \lambda \mathrm{e}^{\prime}\left[P\left(\theta\left(\mathrm{e}^{\prime}\right)\right) \wedge V\left(\mathrm{e}^{\prime}\right)\right] \wedge \oplus P=\theta(\mathrm{e})\right]$

$$
\exists \mathrm{e}\left[\mathrm{e} \epsilon^{*} \lambda \mathrm{e}^{\mathrm{e}}\left[\text { person }\left(\operatorname{agent}\left(\mathrm{e}^{\prime}\right)\right) \wedge \text { come }\left(\mathrm{e}^{\prime}\right)\right] \wedge \oplus \text { person }=\operatorname{agent}(\mathrm{e})\right]
$$

$\lambda \mathrm{x}$. came (x)
$\ll \mathrm{v}, \mathrm{e}>, \ll \mathrm{v}, \mathrm{t}>,<\mathrm{v}, \mathrm{t} \ggg>$
$\lambda \theta \lambda \nu \lambda e\left[\mathrm{e}\right.$ ढ ${ }^{*} \lambda \mathrm{e}^{3}\left[\right.$ person $\left.\left(\theta\left(\mathrm{e}^{\prime}\right)\right) \wedge \mathrm{V}\left(\mathrm{e}^{\mathrm{e}}\right)\right] \wedge \oplus$ person $\left.=\theta(\mathrm{e})\right]$
$\stackrel{<\mathrm{v}, \mathrm{e}>}{ }$
[agent]

Analysis

- woo- $\leadsto \lambda \mathrm{P} \lambda \theta \lambda V \lambda \mathrm{e}\left[\mathrm{e} \in * \lambda \mathrm{e}^{\prime}\left[P\left(\theta\left(\mathrm{e}^{\prime}\right)\right) \wedge V\left(\mathrm{e}^{\prime}\right)\right] \wedge \oplus P=\theta(\mathrm{e})\right]$

The hybrid share/key analysis captures both:

- the one-by-one effect
- the exhaustivity property

Cf. Champollion's (2016)'s analysis of determiner each and Kuhn \& Aristodemo's (2017) of EACH in French Sign Language and "simultaneous distributivity" as Henderson (2019) calls it in for example Comox-Sliammon (Mellesmoen 2018) which "degrades the key-share relationship" (Henderson 2019, 14)

Analysis

Good prediction: Event differentiation

Unlike every, each requires different subevents (Tunstall 1998, Brasoveanu \& Dotlacil 2015, Thomas \& Sudo 2016):
(21) Jake photographed \{ every / \#each \} student in the class, but not individually.

Similar effect in Mandinka:
(22) \#Jake ye dindin-oo-dindin fotoo le, baria may a ke kilin kilin Jake PRED kid-DIST-kid photog. PERF, but 3SG NEG 3SG DO one one 'Jake photographed each kid but not one by one.'

Analysis

Another good prediction: Bad with almost

English: Unlike every, each is bad with almost (Farkas 1997):
(23) Almost $\{$ every / *each \} student left the room.

Similar effect with Mandinka X-woo-X:
(24) *Fode ye pereske siise-e kili-woo-kili samba le Fode PRED almost chicken-DET egg-DIST-egg carry PERF
'*Fode carried almost each egg.'

Analysis

Still unexplained: Different-kinds effect

Recall: X-woo-X acceptable in all-at-once scenario with different kinds

Suggestion: X-woo-X depends on an ordering on the set of X's.
Types can be ordered; individual eggs not so easily. (Cf. Henderson 2013 on "X by X")

Outlook

From Handbook of Quantifiers in Natural Language:
(Keenan \& Paperno 2017, chapter by V. Vydrin)
Quantifiers in Dan-Gwectaa (South Mande) 239
(107) B $\bar{\sim}$ őő $\quad 6 \overline{\widetilde{\varepsilon}}$
r $d u \bar{u}$, \bar{a}
human any human REL.3SG.JNT come\JNT 1SG.EXIđö ä 6ä-’.golNEUT 3SG.NSBJ beat-INF'Whoever comes, I'll beat him/her'.

Outlook

From Handbook of Quantifiers in Natural Language:

(Keenan \& Paperno 2012, chapter by K. Tamba, H. Torrence \& M. Zimmerman on Wolof)
A third construction for expressing universal quantification is the reduplicative $N P$-oo-NP:
(91) a. Góór-óó-góór ma gis-kó man-oo-man 1SG see-3sG
'I saw every single man'
b. Dem-na-a kër-óó-kër
go-Fin-1SG house-oo-house
'I went to every single house'

Outlook

Gil (1995):
"Whether there exist bona fide instances of reduplication with the interpretation of distributive-key universal quantifier must remain open for future investigation."

Nominal reduplication in Mandinka has the interpretation of distributive-key universal quantifier, although it is simultaneously a share-marker.

Does reduplication always mark the share (perhaps in addition to the key)?

A baraka!

Ousmane Cisse (ocisse@bu.edu)

Elizabeth Coppock (ecoppock@bu.edu)

Thanks also to our participants, including Amadou Dabo, Lamine Seydi, Bakary Bodjang, Momodou Dabo, Dembo Saama, Mahawa Gassama, Ibrahima Gassama, Mamadou Lamine Bodjang, Kaaraa Seydi, Mamady Camara, Boubacar Dabo, and Soona Dabo.

Balusu, Rahul. 2005. Distributive reduplication in Telugu. 36th Annual Meeting of the North East Linguistic Society (NELS 36). 39-53. http://semanticsarchive.net/Archive/mEOYTZkZ.
Champollion, L., 2020. Distributivity, collectivity, and cumulativity. The Wiley Blackwell Companion to Semantics, pp.1-38.
Choe, Jae-Woong. 1987. Anti-quantifiers and a theory of distributivity. Amherst, MA:
University of Massachusetts PhD thesis.
http://scholarworks.umass.edu/dissertations/AA18727027/.
Gil, David. 1995. Universal quantifiers and distributivity. In Emmon Bach, Eloise Jelinek, Angelika Kratzer \& Barbara Hall Partee (eds), Quantification in natural languages, 321-62.
Dordrecht: Kluwer. http://dx.doi.org/10.1007/978-94-017-2817-1_11.
Kuhn, J., \& Aristodemo, V. (2017). Pluractionality, iconicity, and scope in French Sign
Language. Semantics and Pragmatics, 10, 6-1.
Safir, K., \& Stowell, T. (1988). Binominal 'each'. In Proceedings of NELS 18 (pp. 426-450).
Amherst.

Appendix

Negation experiment

Exhaustivity effects

$$
\text { Picture }=\text { nonexhausted }
$$

Exhaustivity effects

Exhaustivity+negation experiment

Design

- 3 types of determiners (X-woo-X vs. 'all' vs. 'def')
- 2 polarities (positive vs. negative)
- 2 types of displays (exhaustive, non-exhaustive)
- 2 items (hats and suitcases)

Participants: 12 native speakers (Phase II participants), individually
Procedure: Participants were asked two questions (positive and negative), after the exhaustivity experiment.

True 4/4

Dindiŋ-oo-dindiŋ maŋ walisoo cika. [Each kid is not carrying a suitcase]

- Tonya lon [true]
- Tonya nten [not true]
- A manke tonya ti, a manke fanya ti [not true, not a lie]

True
 4/4

Dindinolu bee man walisoo cika. [All the kids are not carrying a suitcase]

- Tonya lon [true]
- Tonya nten [not true]
- A manke tonya ti, a manke fanya ti [not true, not a lie]

True
 4/4

Dindinolu maŋ walisoo cika. [All the kids are not carrying a suitcase]

- Tonya lon [true]
- Tonya nten [not true]
- A manke tonya ti, a manke fanya ti [not true, not a lie]

