
Lecture 7
Problem of Quantifiers in Object Position

& Presupposition

Elizabeth Coppock

Introduction to Semantics · EGG 2019

1 / 62

Outline

Problem of Quantifiers in Object Position

QR vs. Direct compositionality

Summary

Introducing Presupposition

Presupposition: Formal analysis

2 / 62

Quantifier in object position

Björn loves everyone ∀x . Loves(bj, x)

3 / 62

Problem of quantifiers in object position

∀x . Loves(bj, x)
t

bj
e

Björn

???

λy . λx . Loves(x , y)
〈e, 〈e, t〉〉

loves

λP .∀x .P(x)
〈〈e, t〉, t〉

everyone

4 / 62

Quantifier Raising

Björn
loves everyone

⇒
everyone

λi
Björn

loves ti

5 / 62

The T-model (Government and Binding Theory)

DS

SS

LF PF

6 / 62

Quantifier Raising
∀x . Loves(bj, x)

t

λP .∀x .P(x)
〈〈e, t〉, t〉

everyone

λv3 . Loves(bj, v3)
〈e, t〉

λ3 Loves(bj, v3)
t

bj
e

Björn

λx . Loves(x , v3)
〈e, t〉

λy . λx . Loves(x , y)
〈e, 〈e, t〉〉

loves

v3
e

t3 7 / 62

Outline

Problem of Quantifiers in Object Position

QR vs. Direct compositionality

Summary

Introducing Presupposition

Presupposition: Formal analysis

8 / 62

Direct compositionality

Direct compositionality (in slogan form)

The syntax and semantics work in tandem.

⇒ Each expression computed by the syntax can be interpreted;
interpretation is not ‘postponed’ to a later stage
(Jacobson 2012, i.a.).

Does the problem of quantifiers in object position require a
violation of direct compositionality?

9 / 62

A directly compositional approach: Type-shifting the verb
t

∀y . Loves(s, y)

e
s

Sam

〈e, t〉
λx . ∀y . Loves(x , y)

〈〈〈e, t〉, t〉, 〈e, t〉〉
λQ〈〈e,t〉,t〉 . λx .Q(λy . Loves(x , y))

⇑raise-o
〈e, 〈e, t〉〉

λyλx . Loves(x , y)

loves

〈〈e, t〉, t〉
λP . ∀y .P(y)

everybody

(Hendriks 1993)
10 / 62

A directly compositional approach: Type-shifting the verb
t

∀y . Loves(s, y)

e
s

Sam

〈e, t〉
λx . ∀y . Loves(x , y)

〈〈〈e, t〉, t〉, 〈e, t〉〉
λQ〈〈e,t〉,t〉 . λx .Q(λy . Loves(x , y))

⇑raise-o
〈e, 〈e, t〉〉

λyλx . Loves(x , y)

loves

〈〈e, t〉, t〉
λP . ∀y .P(y)

everybody

(Hendriks 1993)
10 / 62

Is QR empirically motivated?

Arguments by Heim & Kratzer in favor of QR against a (different)
type-shifting analysis:
I Scope ambiguities
I Inverse linking
I Antecedent-contained deletion
I Quantifiers that bind pronouns
I Extraction-scope generalization

11 / 62

Scope ambiguities: the problem

Scope ambiguities: the problem

(1) Somebody loves everybody.

I ∀ > ∃:
For every person y : there is a person x such that x loves y .

I ∃ > ∀
There is a person x such that for all y : x loves y .

12 / 62

Scope ambiguities can be derived
For surface scope: Shift the object, then combine with the subject.

t
∃x∀y . Loves(x , y)

〈〈e, t〉, t〉
λP . ∃x .P(x)

Somebody

〈e, t〉
λx . ∀y . Loves(x , y)

〈〈〈e, t〉, t〉, 〈e, t〉〉
λQ〈〈e,t〉,t〉λx .Q(λy . Loves(x , y))

⇑raise-o
〈e, 〈e, t〉〉

λyλx . Loves(x , y)

loves

〈〈e, t〉, t〉
λP . ∀y .P(y)

everybody

13 / 62

Scope ambiguities can be derived
For inverse scope: Shift the subject first, then the object.

t
∀y∃x . Loves(x , y)

〈〈e, t〉, t〉
λP .∃x .P(x)

Somebody

〈〈〈e, t〉, t〉, t〉
λQ〈〈e,t〉,t〉 .∀y .Q(λx . Loves(x , y))

〈〈〈e, t〉, t〉, 〈〈〈e, t〉, t〉, t〉〉
λQ ′

〈〈e,t〉,t〉λQ〈〈e,t〉,t〉 .Q
′(λy .Q(λx . Loves(x , y)))
⇑raise-o

〈e, 〈〈〈e, t〉, t〉, t〉〉
λyλQ〈〈e,t〉,t〉 .Q(λx . Loves(x , y))

⇑raise-s
〈e, 〈e, t〉〉

λyλx . Loves(x , y)
loves

〈〈e, t〉, t〉
λP .∀y .P(y)

everybody

14 / 62

Scope ambiguities can be derived
For inverse scope: Shift the subject first, then the object.

t
∀y∃x . Loves(x , y)

〈〈e, t〉, t〉
λP .∃x .P(x)

Somebody

〈〈〈e, t〉, t〉, t〉
λQ〈〈e,t〉,t〉 .∀y .Q(λx . Loves(x , y))

〈〈〈e, t〉, t〉, 〈〈〈e, t〉, t〉, t〉〉
λQ ′

〈〈e,t〉,t〉λQ〈〈e,t〉,t〉 .Q
′(λy .Q(λx . Loves(x , y)))
⇑raise-o

〈e, 〈〈〈e, t〉, t〉, t〉〉
λyλQ〈〈e,t〉,t〉 .Q(λx . Loves(x , y))

⇑raise-s
〈e, 〈e, t〉〉

λyλx . Loves(x , y)
loves

〈〈e, t〉, t〉
λP .∀y .P(y)

everybody

14 / 62

Scope ambiguities can be derived
For inverse scope: Shift the subject first, then the object.

t
∀y∃x . Loves(x , y)

〈〈e, t〉, t〉
λP .∃x .P(x)

Somebody

〈〈〈e, t〉, t〉, t〉
λQ〈〈e,t〉,t〉 .∀y .Q(λx . Loves(x , y))

〈〈〈e, t〉, t〉, 〈〈〈e, t〉, t〉, t〉〉
λQ ′

〈〈e,t〉,t〉λQ〈〈e,t〉,t〉 .Q
′(λy .Q(λx . Loves(x , y)))
⇑raise-o

〈e, 〈〈〈e, t〉, t〉, t〉〉
λyλQ〈〈e,t〉,t〉 .Q(λx . Loves(x , y))

⇑raise-s
〈e, 〈e, t〉〉

λyλx . Loves(x , y)
loves

〈〈e, t〉, t〉
λP .∀y .P(y)

everybody

14 / 62

Inverse linking: the problem

(2) One apple in every basket is rotten.

I ∀ > ∃:
For every basket y : there is an apple x in y that is rotten.

I ∃ > ∀ (unavailable)
There is an apple that is in every basket and also rotten.

15 / 62

Inverse linking: the problem

??

??

〈〈e, t〉, 〈〈e, t〉, t〉〉

one

??

〈e, t〉

apple

??

〈e, 〈e, t〉〉

in

〈〈e, t〉, t〉

every basket

〈e, t〉

is rotten

16 / 62

Inverse linking: QR solution
t

〈〈e, t〉, t〉

every basket

〈e, t〉

1 t

〈〈e, t〉, t〉

〈〈e, t〉, 〈〈e, t〉, t〉〉

one

〈e, t〉

〈e, t〉

apple

〈e, t〉

〈e, 〈e, t〉〉

in

e

t1

〈e, t〉

is rotten

17 / 62

Inverse linking: What happens if we object-raise in?

t

〈〈e, t〉, t〉

〈〈e, t〉, 〈〈e, t〉, t〉〉

one

〈e, t〉

〈e, t〉

apple

〈e, t〉

〈〈〈e, t〉, t〉, 〈e, t〉〉
⇑

〈e, 〈e, t〉〉

in

〈〈e, t〉, t〉

every basket

〈e, t〉

is rotten

18 / 62

Inverse linking: Directly compositional solution

See Barker 2005: ‘Remark on Jacobson 1999: Crossover as a local
constraint’, Linguistics and Philosophy.

19 / 62

Antecedent-contained deletion

VP-ellipsis:

(3) I read War and Peace before you did read War and Peace.

Antecedent-contained deletion with and without QR:

(4) a. Mary read every novel that John did
read every novel that John did read every

b. [Every novel that John did read t] Mary read t

Jacobson (1999) solves this without QR, using function composition.

20 / 62

Antecedent-contained deletion

VP-ellipsis:

(3) I read War and Peace before you did read War and Peace.

Antecedent-contained deletion with and without QR:

(4) a. Mary read every novel that John did
read every novel that John did read every

b. [Every novel that John did read t] Mary read t

Jacobson (1999) solves this without QR, using function composition.

20 / 62

Quantifiers that bind pronouns

(5) a. Mary blamed herself.
b. Mary blamed Mary.

(6) a. Every woman blamed herself.
b. Every woman blamed every woman.

(7) a. No man noticed the snake next to him.
b. No man noticed the snake next to no man.

21 / 62

Quantifiers that bind pronouns: QR solution

S

DP

D

every

NP

woman

LP

1 S

DP

t1

VP

V

blamed

DP

herself 1

Without QR, herself 1 would end up as a free variable:

∀x . [Woman(x)→ Blamed(x , v1)]

22 / 62

Quantifiers that bind pronouns: QR solution

S

DP

D

every

NP

woman

LP

1 S

DP

t1

VP

V

blamed

DP

herself 1

Without QR, herself 1 would end up as a free variable:

∀x . [Woman(x)→ Blamed(x , v1)]

22 / 62

Quantifiers that bind pronouns without QR

There are non-QR options, including:

(8) herself λR〈e,〈e,t〉〉λx .R(x , x)

23 / 62

Related: Strict and sloppy readings

From Ghostbusters:

(9) Dr Ray Stantz: You know, it just occurred to me that we
really haven’t had a successful test of this equipment.
Dr. Egon Spengler: I blame myself.
Dr. Peter Venkman: So do I.

strict reading: Venkman blames Spengler

← free pronoun

sloppy reading: Venkman blames Venkman

← bound pronoun

24 / 62

Related: Strict and sloppy readings

From Ghostbusters:

(9) Dr Ray Stantz: You know, it just occurred to me that we
really haven’t had a successful test of this equipment.
Dr. Egon Spengler: I blame myself.
Dr. Peter Venkman: So do I.

strict reading: Venkman blames Spengler ← free pronoun
sloppy reading: Venkman blames Venkman ← bound pronoun

24 / 62

Strict and sloppy readings with QR

S

DP

I
1 S

DP

t1

VP

V

blame

DP

myself 1

S

DP

I

VP

V

blame

DP

myself 1

But Polly Jacobson has addressed this issue as well.

25 / 62

Extraction-scope generalization

In many cases, the constraints on wh-extraction mirror the
constraints on scope.

(10) a. John knows a woman from every country.
b. #John knows a woman who is from every country.

(11) a. Which country does John know a woman from?
b. *Which country does John know a woman who is from?

But many counterexamples; cf. Simon Charlow’s lecture last
Wednesday.

26 / 62

So do we really need QR?

No, direct compositionality can be maintained (as far as I can see).

You just need a bit of advanced machinery to handle:

I Antecedent-contained deletion
I Inverse linking
I Strict vs. sloppy identity

27 / 62

Outline

Problem of Quantifiers in Object Position

QR vs. Direct compositionality

Summary

Introducing Presupposition

Presupposition: Formal analysis

28 / 62

Summary

Composition rules:
I Function Application
I Predicate Modification
I Pronouns and Traces Rule
I Predicate Abstraction

29 / 62

Composition Rules (I)

Function Application

Let γ be a tree whose only two subtrees are α and β where:
I α α′ and α′ has type 〈σ, τ〉
I β β′ and β′ has type σ.

Then
γ α′(β′)

30 / 62

Composition Rules (II)

Predicate Modification
If:
I γ is a tree whose only two subtrees are α and β
I α α′

I β β′

I α′ and β′ are of type 〈e, t〉
Then:

γ λu . [α′(u) ∧ β′(u)]

where u is a variable of type e that does not occur free in α′ or β′.

31 / 62

Composition rules (III)

Pronouns and Traces Rule
If α is an indexed trace or pronoun, αi ve,i

Predicate Abstraction
If
I γ is an expression whose only two subtrees are αi and β
I β β′

I β′ is an expression of type t

Then γ λvi ,e . β
′

32 / 62

Outline

Problem of Quantifiers in Object Position

QR vs. Direct compositionality

Summary

Introducing Presupposition

Presupposition: Formal analysis

33 / 62

The theremin

I Electronic instrument
I Controlled without

physical contact
I Patented in 1928 by

Léon Theremin.
I Clara Rockmore

(1911–1998) was a
theremin virtuoso

34 / 62

Wolfgang Amadeus Mozart

I Lived 1756-1771
I Composed pieces for many different

instruments
I Never encountered a theremin
I As a consequence, never composed

a theremin duo

35 / 62

True or not true?

(12) There is at least one theremin duo by Mozart.

Not true

Negation:

(13) There are no theremin duos by Mozart. True

36 / 62

True or not true?

(12) There is at least one theremin duo by Mozart. Not true

Negation:

(13) There are no theremin duos by Mozart. True

36 / 62

True or not true?

(12) There is at least one theremin duo by Mozart. Not true

Negation:

(13) There are no theremin duos by Mozart. True

36 / 62

True or not true?

(12) There is at least one theremin duo by Mozart. Not true

Negation:

(13) There are no theremin duos by Mozart.

True

36 / 62

True or not true?

(12) There is at least one theremin duo by Mozart. Not true

Negation:

(13) There are no theremin duos by Mozart. True

36 / 62

True or not true?

(14) Every theremin duo by Mozart is famous.

Not true

Negation:

(15) Not every theremin duo by Mozart is famous. Not true

37 / 62

True or not true?

(14) Every theremin duo by Mozart is famous. Not true

Negation:

(15) Not every theremin duo by Mozart is famous. Not true

37 / 62

True or not true?

(14) Every theremin duo by Mozart is famous. Not true

Negation:

(15) Not every theremin duo by Mozart is famous. Not true

37 / 62

True or not true?

(14) Every theremin duo by Mozart is famous. Not true

Negation:

(15) Not every theremin duo by Mozart is famous.

Not true

37 / 62

True or not true?

(14) Every theremin duo by Mozart is famous. Not true

Negation:

(15) Not every theremin duo by Mozart is famous. Not true

37 / 62

Presupposition

If A presupposes B, then A not only implies B but also implies
that the truth of B is somehow taken for granted, treated as
uncontroversial.

(Chierchia & McConnell-Ginet 2000, 28)

38 / 62

Presupposition accommodation

On Jimmy Kimmel’s Lie Witness News:

INTERVIEWER: What do you think of the government’s plan to
schedule earthquakes for every five years, instead of the current 12
years?

INTERVIEWEE: I think it’s very.... conservation-minded.

39 / 62

Presupposition

If A presupposes B, then to assert A, deny A, wonder whether A, or
suppose A – to express any of these attitudes toward A is generally
to imply B, to suggest that B is true and, moreover,
uncontroversially so. That is, considering A from almost any
standpoint seems already to assume or presuppose the truth of B; B
is part of the background against [which] we (typically) consider A.

(Chierchia & McConnell-Ginet 2000, 28)

40 / 62

Family of sentences

Mozart wrote at least one theremin duo

Every Mozart theremin
duo is famous

Not every Mozart theremin
duo is famous

Is every Mozart theremin
duo famous?

If every Mozart theremin duo is
famous, then I’m out of the loop.

41 / 62

Family of sentences

Mozart wrote at least one theremin duo

Every Mozart theremin
duo is famous

Not every Mozart theremin
duo is famous

Is every Mozart theremin
duo famous?

If every Mozart theremin duo is
famous, then I’m out of the loop.

41 / 62

Family of sentences

Mozart wrote at least one theremin duo

Every Mozart theremin
duo is famous

Not every Mozart theremin
duo is famous

Is every Mozart theremin
duo famous?

If every Mozart theremin duo is
famous, then I’m out of the loop.

41 / 62

Family of sentences

Mozart wrote at least one theremin duo

Every Mozart theremin
duo is famous

Not every Mozart theremin
duo is famous

Is every Mozart theremin
duo famous?

If every Mozart theremin duo is
famous, then I’m out of the loop.

41 / 62

Presupposition projection

If A implies B, and ‘not A’ implies B, then inference from A to B
projects over negation.

Presuppositions project (i) over negation, (ii) through question
formation, and (iii) from the antecedent of a conditional.

42 / 62

To run the projection test

1. Construct the examples:
(i) not-A (the negation of A)
(ii) A? (a yes/no question)
(iii) If A, then C (a conditional)

2. Ask the question:
Do these sentences imply B?

3. Interpret the result: Yes ⇒ presupposition.

43 / 62

Triggers

A presupposition trigger is a word or construction that
conventionally signals a presupposition.

Example: every.

44 / 62

Presupposition triggers

Ed is glad we won � We won
Ed knows we won � We won
Ed’s son is bald � Ed has a son
Only Ed came � Ed came
The balcony is lovely � There is a balcony

45 / 62

To paraphrase Strawson

Your friend says:

(16) The king of France is wise.
(using an empty definite description)

Would you agree or disagree? Preferably neither.

46 / 62

Outline

Problem of Quantifiers in Object Position

QR vs. Direct compositionality

Summary

Introducing Presupposition

Presupposition: Formal analysis

47 / 62

Definite descriptions (Fregean analysis)

Smiled(ιx . Singer(x))
t

ιx . Singer(x)
e

λP . ιx .P(x)
〈〈e, t〉, e〉

the

λy . Singer(y)
〈e, t〉

singer

λz . Smiled(z)
〈e, t〉

smiled

48 / 62

Iota

Syntax rule: Iota

If φ is an expression of type t, and u is a variable of type e, then
ιu . φ is an expression of type e.

Semantic rule: Iota

Jιu . φKM,g =

{
d if {k : JφKM,g [u 7→k] = 1} = {d}
#e otherwise

#e : ‘a completely alien entity’ (Kaplan 1989), what definite
descriptions denote when they don’t denote anything that exists.

49 / 62

Sentences with empty descriptions

If a sentence contains an empty description, what does the
sentence denote?

I Normally, the third truth value: #
I Exception: the existence predicate
I Other exceptions: with presupposition plugs and filters

50 / 62

Existence predicate with empty descriptions

(17) The golden mountain does not exist.

(18) ¬Exists(ιx . [Golden(x) ∧Mountain(x)])

Semantic rule: Existence predicate

JExists(α)KM,g = 1 if JαKM,g 6= #e and 0 otherwise

51 / 62

Other predicates with empty descriptions

(19) The golden mountain is in Nebraska.
In(ιx . [Golden(x) ∧Mountain(x)], nebraska)

(20) The golden mountain is not in Nebraska.
¬In(ιx . [Golden(x) ∧Mountain(x)], nebraska)

Both would normally denote the third truth value, #.

52 / 62

Negation in 3-valued logic

¬
T F
F T
#

53 / 62

Other presupposition triggers

(21) a. Both candidates laughed.
b. If both candidates laughed, then...

(22) a. Neither candidate laughed.
b. If neither candidate laughed, then...

All imply: There were two candidates.

54 / 62

Semantics of ∂ ‘partial’

∂

T T
F #
#

55 / 62

Example

Neither candidate laughed
[∂(|Cand| = 2) ∧ ¬∃x . [Cand(x) ∧ Laughed(x)]]

56 / 62

Compositional derivation

[∂(|Cand| = 2)
∧¬∃x . [Cand(x) ∧ Laughed(x)]]

λQ . [∂(|Cand| = 2)
∧¬∃x . [Cand(x) ∧ Q(x)]]

λPλQ . [∂(|P| = 2)
∧¬∃x . [P(x) ∧ Q(x)]]

neither

λx .Cand(x)

candidate

λx . Laughed(x)

laughed

57 / 62

Example

Every candidate laughed
[∂(∃x .Cand(x)) ∧ ∀x . [Cand(x)→ Laughed(x)]]

58 / 62

Compositional derivation

[∂(∃x .Cand(x))
∧∀x . [Cand(x)→ Laughed(x)]]

λQ . [∂(∃x .Cand(x))
∧∀x . [Cand(x)→ Q(x)]]

λPλQ . [∂(∃x .Cand(x))
∧∀x . [P(x)→ Q(x)]]

every

λx .Cand(x)

candidate

λx . Laughed(x)

laughed

59 / 62

Comparison with Heim and Kratzer style

λQ . [∂(∃x .Cand(x)) ∧ ∀x . [Cand(x)→ Q(x)]]

in Heim and Kratzer style would be:

λQ : ∃x [x is a candidate] . ∀x [x is a candidate → Q(x)]

The colon and the dot separate the domain restriction for the
function.

60 / 62

Comparison with Heim and Kratzer style

λQ . [∂(∃x .Cand(x)) ∧ ∀x . [Cand(x)→ Q(x)]]

in Heim and Kratzer style would be:

λQ : ∃x [x is a candidate] . ∀x [x is a candidate → Q(x)]

The colon and the dot separate the domain restriction for the
function.

60 / 62

Comparison with Heim and Kratzer style

[∂(∃x .Cand(x)) ∧ ∀x . [Cand(x)→ Laughed(x)]]

In Heim and Kratzer style would be:

???

61 / 62

Barker, Chris. 2005. Remark on Jacobson 1999: Crossover as a
local constraint. Linguistics and Philosophy 28(4). 447–472.

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. Meaning and
grammar: An introduction to semantics. Cambridge, MA: MIT
Press 2nd edn.

Hendriks, Hermann. 1993. Studied flexibility: ILLC dissertation.
Jacobson, Pauline. 1999. Towards a variable-free semantics.

Linguistics and Philosophy 22. 117–184.
Jacobson, Pauline. 2012. Direct compositionality. In The Oxford

handbook of compositionality, 109–129. Oxford University Press.

62 / 62

	Problem of Quantifiers in Object Position
	QR vs. Direct compositionality
	Summary
	Introducing Presupposition
	Presupposition: Formal analysis
	References

