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Preface

Semantics, the study of meaning, is a core subfield of linguistics, a
discipline that integrates methods from the social sciences, liberal
arts, and mathematics to study the nature of language. Since the
1970s, much of semantics has taken a formal turn, including tech-
niques from mathematics such as logic and set theory. This text-
book is a gentle and compact introduction to these techniques,
and focuses on the way the meaning of individual expressions in
natural language (words and phrases) combine to produce larger
meaningful expressions such as sentences and texts.

Students are guided through the development of a formally
precise, compositional, model-theoretic account of semantics, us-
ing a logical representation language that is well-rooted in intel-
lectual tradition, yet modern. The book familiarizes students with
the main tools and techniques they need to understand current
research in formal semantics and contribute to the state of the art,
and provides students with training in how to argue for one for-
malized theory over another on the basis of empirical evidence,
through hypothesis comparison. We have used the book to teach
a one-semester introduction to formal semantics for students who
have already studied some semantics, though no previous experi-
ence with logic is required. Beyond its use in traditional classroom
settings, this book is suitable for flipped classrooms (i.e. classes
where students read the textbook at home and use classroom time
to ask questions and solve exercises) and for self-study.

One distinguishing feature of this book is the Lambda Calcu-
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lator, an interactive, graphical application to help students prac-
tice derivations in the typed lambda calculus. It is designed for
both students and teachers, with modules for online classroom
instruction, graded homework assignments, and self-guided prac-
tice. The primary function is to assist in the computation of nat-
ural language denotations up a syntactic tree. To this end, the
program detects common errors and attempts to provide intel-
ligent feedback to the student user and a record of performance
for the instructor. Many exercises in this textbook are designed to
be solved with the Lambda Calculator. The software runs on Mac,
Linux, and Windows machines. The student version of the calcu-
lator is available as a free download from www.lambdacalculator.
com, which also provides documentation and exercise files; the
teacher edition, which offers advanced functionality, is available
to instructors on request by writing to champollion@nyu.edu. The
Lambda Calculator was originally developed by Lucas Champol-
lion, Maribel Romero, and Josh Tauberer (Champollion et al., 2007).
Further contributions to its code and documentation have been
made by Anna Alsop, Dylan Bumford, Raef Khan, Alex Warstadt,
and Nigel Flower, whose help we gratefully acknowledge.

Instructors who have previously taught from Heim & Kratzer
(1998) will find much familiar material in this book, such as the
composition rules: Function Application, Predicate Modification,
Predicate Abstraction, Lexical Terminals, and the Pronouns and
Traces Rule. The most prominent difference in the framework
is that we translate English expressions into well-formed expres-
sions of the lambda calculus rather than specifying denotations
directly using an informal metalanguage containing lambdas. Our
style of analysis involves defining a formal representation language,
which is a logic with a syntax and a semantics (the language of
lambda calculus, with some enhancements borrowed from the
linguistic tradition), and defining a systematic translation from
English to that language (‘translate-first, interpret-second’, in slo-
gan form). Our logic-based representation language is both more
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precise and more compact than the informal language based on
paraphrases adopted in Heim & Kratzer (1998). Our derivations
easily fit into tree representations. Here is a sample derivation in-
volving both Predicate Modification and Function Application:

DP
e

ιx .[textbook(x)∧on(x,sem)]

D
⟨⟨e, t⟩,e⟩

λP . ιx .P(x)

the

N′

⟨e, t⟩
λx .[textbook(x)∧on(x,sem)]

N
⟨e, t⟩

λx .textbook(x)

textbook

PP
⟨e, t⟩

λx .on(x,sem)

P
⟨e,⟨e, t⟩⟩

λyλx .on(x, y)

on

DP
e

sem

semantics

Another important departure from the Heim & Kratzer (1998)
framework is in the treatment of presupposition. Partial functions
are replaced with total functions whose range includes an ‘unde-
fined’ value, and a partiality operator is introduced. This means
that Function Application is always defined, it is easy to read off
the presuppositions of a sentence from its logical translation, and
definedness conditions do not get lost along the way.

There is also a greater emphasis on the notion of denotation
relative to a model. This grounds our formal representation more
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firmly in intellectual tradition, and provides us with a method for
capturing entailments, which we view as the primary source of
data for a semantic theory.

We are grateful to Omar Agha, Masha Esipova, and Alicia Par-
rish for assisting us with preparing the text of this book and for
helping us create the answer keys. For helpful discussion, com-
ments and feedback, we are grateful to David Beaver, Brian Buc-
cola, Ivano Caponigro, Natalie Clarius, Kathryn Davidson, Alexan-
der Stewart Davies, Thomas Grano, Magda Kaufmann, Nathan Klinedinst,
Karen Lewis, Dean McHugh, Adam Przepiórkowski, Zoltán Szabó,
James Walsh, Joost Zwarts, and the students of NYU Semantics I
courses in 2019 and 2020.

[a full list of acknowledgements will be added in the final ver-
sion]

Draft January 18, 2024



Contents

1 Introduction 13
1.1 Implication . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Varieties of implication . . . . . . . . . . . . . . . . . . 15

1.2.1 Defining entailment . . . . . . . . . . . . . . . 15
1.2.2 Other semantic relations . . . . . . . . . . . . . 24
1.2.3 Entailment vs. implicature . . . . . . . . . . . . 28

1.3 Theoretical foundations . . . . . . . . . . . . . . . . . 36
1.3.1 Truth-conditional semantics . . . . . . . . . . 36
1.3.2 Compositionality . . . . . . . . . . . . . . . . . 39
1.3.3 Indirect interpretation . . . . . . . . . . . . . . 43

2 Sets, relations, and functions 47
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Negative polarity items: the puzzle . . . . . . . . . . . 48
2.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Negative polarity items revisited . . . . . . . . . . . . 68
2.5 Relations and functions . . . . . . . . . . . . . . . . . 73

2.5.1 Ordered pairs . . . . . . . . . . . . . . . . . . . 73
2.5.2 Relations . . . . . . . . . . . . . . . . . . . . . . 75
2.5.3 Functions . . . . . . . . . . . . . . . . . . . . . 79

3 Propositional logic 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Propositional logic . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Formulas and propositional letters . . . . . . . 88

7



8 CONTENTS

3.2.2 Boolean connectives . . . . . . . . . . . . . . . 92
3.2.3 Conditionals and biconditionals . . . . . . . . 105
3.2.4 Equivalence, contradiction and tautology . . . 110

3.3 Summary: Propositional logic . . . . . . . . . . . . . . 113
3.3.1 Syntax of LProp . . . . . . . . . . . . . . . . . . . 113
3.3.2 Semantics of LProp . . . . . . . . . . . . . . . . 114

4 Predicate logic 115
4.1 From propositional logic to predicate logic . . . . . . 115

4.1.1 Individual constants . . . . . . . . . . . . . . . 116
4.1.2 Predication . . . . . . . . . . . . . . . . . . . . . 121
4.1.3 Functions . . . . . . . . . . . . . . . . . . . . . 129
4.1.4 Identity . . . . . . . . . . . . . . . . . . . . . . . 132

4.2 Quantification . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.1 Syntax of LPred . . . . . . . . . . . . . . . . . . . 152
4.2.2 Semantics of LPred . . . . . . . . . . . . . . . . . 155

5 Typed lambda calculus 165
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2 Lambda abstraction . . . . . . . . . . . . . . . . . . . 168

5.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . 168
5.2.2 Syntax and semantics . . . . . . . . . . . . . . . 175
5.2.3 Application and beta reduction . . . . . . . . . 177
5.2.4 Some applications . . . . . . . . . . . . . . . . 183

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3.1 Syntax of Lλ . . . . . . . . . . . . . . . . . . . . 186
5.3.2 Semantics of Lλ . . . . . . . . . . . . . . . . . . 194

5.4 Further reading . . . . . . . . . . . . . . . . . . . . . . 197

6 Function Application 199
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 199
6.2 Fun with Function Application . . . . . . . . . . . . . 209

6.2.1 Agnetha loves Björn . . . . . . . . . . . . . . . . 209
6.2.2 Björn is kind . . . . . . . . . . . . . . . . . . . . 212
6.2.3 Frida is with Benny . . . . . . . . . . . . . . . . 214

Draft January 18, 2024



CONTENTS 9

6.2.4 Benny is proud of Frida . . . . . . . . . . . . . . 215
6.2.5 Agnetha is a singer . . . . . . . . . . . . . . . . 216

6.3 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.4 Quantifiers: type ⟨⟨e, t⟩, t⟩ . . . . . . . . . . . . . . . . 222

6.4.1 Quantifiers . . . . . . . . . . . . . . . . . . . . . 222
6.4.2 Quantificational determiners . . . . . . . . . . 224
6.4.3 Empirical diagnostics against type e . . . . . . 229

6.5 Quantifiers in object position . . . . . . . . . . . . . . 233
6.6 Negation and Quantifiers . . . . . . . . . . . . . . . . 235

6.6.1 Scope ambiguity . . . . . . . . . . . . . . . . . 235
6.6.2 Negative Concord . . . . . . . . . . . . . . . . . 237

6.7 Generalized quantifiers . . . . . . . . . . . . . . . . . 243
6.8 Toy fragment . . . . . . . . . . . . . . . . . . . . . . . . 257

7 Beyond Function Application 263
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 263
7.2 Adjectives . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.3 Relative clauses . . . . . . . . . . . . . . . . . . . . . . 281
7.4 Quantifiers in object position . . . . . . . . . . . . . . 295

7.4.1 Quantifier raising . . . . . . . . . . . . . . . . . 295
7.4.2 A type-shifting approach . . . . . . . . . . . . . 302

7.5 Pronouns . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.6 Indexicality . . . . . . . . . . . . . . . . . . . . . . . . . 319

8 Presupposition 323
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 323
8.2 The definite determiner . . . . . . . . . . . . . . . . . 330
8.3 Presupposition accommodation . . . . . . . . . . . . 345
8.4 Definedness conditions . . . . . . . . . . . . . . . . . 347
8.5 Designing a three-valued logic . . . . . . . . . . . . . 351
8.6 Comparison with the colon-dot notation . . . . . . . 360
8.7 L∂: A partialized lambda calculus . . . . . . . . . . . . 361
8.8 The projection problem . . . . . . . . . . . . . . . . . 367

Draft January 18, 2024



10 CONTENTS

9 Dynamic semantics 373
9.1 Pronouns with indefinite antecedents . . . . . . . . . 373
9.2 File change semantics . . . . . . . . . . . . . . . . . . 381
9.3 Compositional DRT . . . . . . . . . . . . . . . . . . . . 384

10 Coordination and plurals 401
10.1 Coordination . . . . . . . . . . . . . . . . . . . . . . . . 401
10.2 Collective predication and mereology . . . . . . . . . 408
10.3 The plural . . . . . . . . . . . . . . . . . . . . . . . . . 414

10.3.1 Algebraic closure . . . . . . . . . . . . . . . . . 414
10.3.2 Plural definite descriptions . . . . . . . . . . . 418

10.4 Cumulative readings . . . . . . . . . . . . . . . . . . . 422
10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 424

10.5.1 Logic syntax . . . . . . . . . . . . . . . . . . . . 424
10.5.2 Logic semantics . . . . . . . . . . . . . . . . . . 425
10.5.3 English syntax . . . . . . . . . . . . . . . . . . . 427
10.5.4 Translations . . . . . . . . . . . . . . . . . . . . 427

11 Event semantics 431
11.1 Why event semantics . . . . . . . . . . . . . . . . . . . 431

11.1.1 The Neo-Davidsonian turn . . . . . . . . . . . 436
11.2 Aktionsart . . . . . . . . . . . . . . . . . . . . . . . . . 440
11.3 Composition in Neo-Davidsonian event semantics . 443

11.3.1 Verbs as predicates of events . . . . . . . . . . 444
11.3.2 A formal fragment . . . . . . . . . . . . . . . . . 449

11.4 Quantification in event semantics . . . . . . . . . . . 450
11.4.1 Verbs as event quantifiers . . . . . . . . . . . . 454
11.4.2 Another formal fragment . . . . . . . . . . . . 461

11.5 Conjunction in event semantics . . . . . . . . . . . . 462
11.6 Negation in event semantics . . . . . . . . . . . . . . . 466

12 Tense and aspect 471
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 471

12.1.1 Temporalism vs. eternalism . . . . . . . . . . . 471
12.1.2 Some desiderata for a theory of tense . . . . . 473

Draft January 18, 2024



CONTENTS 11

12.2 A formal theory of tense . . . . . . . . . . . . . . . . . 484
12.2.1 A partial, context-sensitive logic with times . . 484
12.2.2 English tense and aspect . . . . . . . . . . . . . 489

12.3 Summary and outlook . . . . . . . . . . . . . . . . . . 501

13 Intensional semantics 503
13.1 Necessity and possibility . . . . . . . . . . . . . . . . . 503

13.1.1 Necessary vs. contingent . . . . . . . . . . . . . 503
13.1.2 Modality and inference . . . . . . . . . . . . . . 505
13.1.3 Modals: Strength and flavor . . . . . . . . . . . 507

13.2 Intension vs. extension . . . . . . . . . . . . . . . . . . 509
13.3 Opacity puzzles . . . . . . . . . . . . . . . . . . . . . . 512

13.3.1 Substitutability and its failures . . . . . . . . . 512
13.3.2 Veridicality . . . . . . . . . . . . . . . . . . . . . 515
13.3.3 Existential import . . . . . . . . . . . . . . . . . 516
13.3.4 De dicto vs. de re . . . . . . . . . . . . . . . . . . 516

13.4 Representing intensionality . . . . . . . . . . . . . . . 519
13.4.1 Intensional models . . . . . . . . . . . . . . . . 520
13.4.2 Representing worlds explicitly . . . . . . . . . 523
13.4.3 Definitions for Ty2 . . . . . . . . . . . . . . . . 525
13.4.4 Translating from English to Ty2 . . . . . . . . . 527

13.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . 535
13.5.1 Substitutability and its failures . . . . . . . . . 535
13.5.2 Existential import . . . . . . . . . . . . . . . . . 538
13.5.3 De dicto vs. de re . . . . . . . . . . . . . . . . . . 540

13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Draft January 18, 2024





1 ∣ Introduction

1.1 Implication

This is a book about meaning. What is meaning? It seems that
meaning is somehow tied to understanding, insofar as understand-
ing something amounts to grasping its meaning. So what is it
to understand? For instance, does Google understand language?
Many might argue that it does, at least to some extent. Case in
point: On July 29, 2020, we typed in “350 USD in SEK” and got
back “3062.33 Swedish Krona” as the first result. The ability to
compute equivalences systematically and reliably is behavior that
demands non-trivial depth of semantic processing. But in other
cases, at the time of writing, Google shows itself to be engaging
rather superficially with text, without much understanding of the
meaning.

How can we tell? One of the hallmarks of human understand-
ing is the ability to draw INFERENCES; in other words, to under-
stand something is to be able to determine its IMPLICATIONS. For
example, at the time of writing, there is a web page that says:

(1) Natalie Portman speaks English and Hebrew fluently, and
she also speaks Spanish, German, Japanese, and French.1

From this sentence, a reader would likely infer that Natalie Port-

1https://www.ranker.com/list/celebrities-who-are-bilingual/
celebrity-lists. Accessed August 20, 2019.

https://www.ranker.com/list/celebrities-who-are-bilingual/celebrity-lists
https://www.ranker.com/list/celebrities-who-are-bilingual/celebrity-lists


14 Introduction

man does not speak Russian—if she did, then Russian would have
been listed among the languages she speaks. The sentence would
not be false, strictly speaking, if it turned out that Natalie Portman
also speaks Russian. Still, it somehow implies that she does not.
A human or computer system that understands language would
be able to draw this inference from the text. (Students who have
studied semantics/pragmatics before will recognize this example
as a case of ‘conversational implicature’; more on this notion be-
low.)

Another inference that a reader would be licensed to draw is
this:

(2) Natalie Portman speaks more than two languages.

This inference follows more strongly from (1): There’s no way for
(1) to be true without (2) being true as well. (In other words, this
is a case of an ‘entailment’; more on this notion below.) A hall-
mark of a system or agent that understands language—or grasps
meaning—is that it can draw these kinds of inferences. In other
words, a good theory of meaning should be able to explain when
one sentence IMPLIES another sentence.2

We mean ‘implies’ here in a broad sense, one that covers sev-
eral different specific types of implications. In this broad sense,
our sentence (1) implies both:

• that Natalie Portman doesn’t speak Russian, and

2Terminological note: An IMPLICATION (or IMPLICATION RELATION) is a re-
lation that holds between some sentences, called PREMISES, and another sen-
tence, the CONCLUSION, when the conclusion follows from the premises. We
say in that case that the premises IMPLY the conclusion. The noun inference nor-
mally describes the act of inferring conclusions from premises, but inference can
also be used to mean implication. The verb infer is totally different from the verb
imply, though; an intelligent person infers conclusions based on premises, but
premises imply conclusions. The subject of infer is the person drawing the in-
ference (the hearer). The subject of imply can either be the speaker, as in John
implied that he would be home late, or the premise of an argument, as in Sen-
tence A implies Sentence B.
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• that she speaks more than two languages.

These are not the same kind of implication, but they can both be
classified under that broader umbrella.

One way of defining ‘implies’ in this broad sense is as follows:
‘A implies B (in context C)’ means: If someone says A (in context
C), then a typical listener will conclude that B is true (assuming
that they trust the speaker).’ This notion covers a wide range of
subtypes of implication, including ENTAILMENTS, IMPLICATURES,
and PRESUPPOSITIONS. This chapter provides a brief introduction
to all three, explains how to tell them apart, and gives an overview
of how, and to what extent, our theory of semantics will handle
them.

1.2 Varieties of implication

1.2.1 Defining entailment

In semantics, the type of implication that lies at the core is entail-
ment. Let us now characterize this notion. Entailment is closely
connected with reasoning. Somebody who infers (2) Natalie Port-
man speaks more than two languages based on (1) Natalie Port-
man speaks English and Hebrew fluently, and she also speaks Span-
ish, ... reasons correctly. Somebody who infers based on

(3) Some lizards are pets.

that

(4) Some pets are lizards.

reasons correctly as well. But somebody who infers from

(5) All cats are animals.

that
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16 Introduction

(6) All animals are cats.

does not reason correctly. We will say that sentence (1) ENTAILS

sentence (2), and that sentence (3) entails sentence (4). Sentence
(5) does not entail sentence (6) under the definition of entailment
that we will build our way up to in what follows.

Entailment can relate more than two sentences. For example,
sentences (7a) and (7b) taken together entail (7c).

(7) a. Every man is mortal.
b. Socrates is a man.
c. ∴ Socrates is mortal.

Similarly, in the following examples, the (a) and (b) sentences to-
gether entail the (c) sentence.

(8) a. If it rained last night, then the lawn is wet.
b. It rained last night.
c. ∴ The lawn is wet.

(9) a. Aristotle taught Alexander the Great.
b. Alexander the Great was a king.
c. ∴Aristotle taught a king.

The symbol ∴ is pronounced “therefore”.
Each of these three sequences of sentences is an ARGUMENT,

in the sense that it presents a CONCLUSION as a consequence of
one or more PREMISES.3 In the case of (7), for example, the premises
are (7a) and (7b), and the conclusion is (7c).

Arguments whose conclusion follows from their premises, like
the ones in (7) to (9), are called VALID; others INVALID. In this
book, we use the symbol ∴ for valid arguments and the symbol

3The term argument has other senses in addition to this one, as in for example
The couple had a huge argument yesterday, and nearly broke up where argument
means something like verbal altercation, or The author’s argument is that mass
incarceration is an inevitable consequence of neo-liberal capitalism, where the
term argument is used as a synomym for claim.
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/∴ for invalid arguments. ENTAILMENT is defined as the relation-
ship between the premise(s) and conclusion of a valid argument.
So, if we have a theory of what makes a valid argument, we have a
theory of entailment.

Validity is about reasoning correctly. What, then, is it to reason
correctly or incorrectly? Consider again this invalid argument:

(10) a. All cats are animals. (Premise)
b. /∴All animals are cats. (Conclusion)

The premise of this argument is true, but its conclusion is false.
Whenever that situation arises, an argument is invalid. But there
are also invalid arguments with true premises and true conclu-
sions:

(11) a. All cats are animals. (Premise 1: True)
b. Some animals are black. (Premise 2: True)
c. /∴ Some cats are black. (Conclusion: True)

Both premises of this argument are true, and so is its conclusion.
But this is not correct reasoning. The conclusion doesn’t follow
from the premises. What exactly does this notion of following
amount to?

While it’s easy to see that reasoning from true premises to a
false conclusion is not correct reasoning, it’s much harder to put
your finger what goes wrong when we reason incorrectly from true
premises to a true conclusion. What part of the reasoning is incor-
rect? That is, why is argument (11) not valid? Here is one way of
thinking about it: It is not valid because one can find a counterex-
ample. Imagine the argument is put to someone, Johnny, whose
mastery of the English language is quite limited (think of a second
language learner English at the beginner level, a small child, or
a computer, if you like). Johnny can understand some words like
all, are, and some. He hasn’t come across the words animal, black,
and cat before, but he can tell that they are three different words
(he likes to refer to them by their initial letters, A, B, and C). So to
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18 Introduction

Thing in the world Is it A? Is it B? Is it C?

Thing 1 yes no yes
Thing 2 yes no yes
Thing 3 yes no yes
Thing 4 yes yes no
Thing 5 yes yes no
Thing 6 yes yes no
Thing 7 yes yes no

Table 1.1: A particular CASE where A describes everything there is,
and nothing is described both by B and by C.

Johnny, the argument might as well look like this:

(12) a. All C are A.
b. Some A are B.
c. Some C are B.

Let’s say that even though Johnny doesn’t understand the mean-
ings of the words A, B, and C, he can still tell that each of them de-
scribes certain things in the world. And he can consider different
possibilities or CASES. For example, it might be that A describes
everything there is, and that nothing is described both by B and
by C, like in the case described by Table 1.1.

Johnny thinks about this case and notices that he has found a
COUNTEREXAMPLE to the argument: in this case, the two premises
of the argument in (12) are both true but the conclusion is false.
This means that the argument is not valid. If there is a hypothet-
ical case where the premises are true and the conclusion is false,
then the conclusion does not follow from the premises.

According to the way we use the term in this book, a CASE is
something relative to which it makes sense to ask whether a sen-
tence is true. For example, the sentence All C are A is true in the
case depicted in Table 1.1, but it is not true relative to some other
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cases. There are different ways to think about cases, which result
in different notions of validity. One might think of them either as a
‘model’, ‘structure’, or ‘interpretation’ in the sense used in formal
logic, or as what philosophers might call a ‘possible world’, ‘cir-
cumstance (of evaluation)’, ‘state of affairs’, or ‘scenario’. We have
chosen the term CASE in order to remain neutral among these
more specific notions as we give general definitions for the no-
tions of validity and entailment. Informally, cases can be thought
of as the kinds of possibilities that Johnny considers, like the one
illustrated in Table 1.1.

With all this in mind, let us define validity as follows:

(13) An argument is VALID if and only if: In any case where all
of the premises are true, the conclusion is true too.

We can determine whether the argument is valid by imagining all
of the different sorts of cases that there are: Cases where nothing
is A, and everything is both B and C, etc., etc. Among all of these
different sorts of cases, is there one where the premises are true
but the conclusion is false? If so, then the argument has a coun-
terexample, and is therefore not valid.

Above, we defined entailment in terms of validity. Given the
definition of validity that we now have, entailment between two
sentences A and B can be defined as follows:

(14) A ENTAILS B if and only if: In any case where A is true, B is
true too.
Or in slogan form: Whenever A is true, B is true too.

One important job of the semanticist is to set up a theory of when
sentences in natural language stand in an entailment relation and
when they do not.

As far as entailment and validity are concerned, it doesn’t mat-
ter whether the premises are true in reality. These notions are is
not about evaluating truth in a single case; it’s about what hap-
pens when you step back and consider every case. Indeed, an ar-
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gument can involve correct reasoning and thus be valid even if it
has false premises – in other words, even if the basis of the argu-
ment is not factual:

(15) a. Lemonade is made from watermelon. (False)
b. Watermelon is a type of vegetable. (False)
c. ∴ Lemonade is made from a type of vegetable. (False)

Of course lemonade is not actually made from watermelon, and
watermelon is not actually a vegetable. But still the conclusion
follows as an entailment from the premises. If we run it by Johnny,
he will tell us that the argument is valid, because it has no coun-
terexamples. In every case in which the premises are true, the
conclusion is true too. As this example shows, an argument can
involve correct reasoning and thus be valid even if it has false premises
– in other words, even if the basis of the argument is not factual.
(While one might hesitate to call it a good argument, that’s a dif-
ferent matter.)

An argument that is valid and whose premises are furthermore
actually true is called SOUND. So the argument in (15) is valid but
not sound. Unlike validity, soundness depends on whether the
premises are actually true, so knowing whether an argument is
sound goes beyond Johnny’s capabilities.

Both soundness and validity are useful concepts. In ordinary
life, it matters a lot whether we reason from true or false premises.
But it also matters whether we make mistakes in our reasoning
itself. Soundness is about correct reasoning from true premises,
and validity is just about correct reasoning. The following argu-
ment is also valid but not sound. This argument has one false
premise, one true premise and a true conclusion:

(16) a. Lemonade is made from watermelon. (False)
b. Watermelon is a type of fruit. (True)
c. ∴ Lemonade is made from a type of fruit. (True)
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Exercise 1. Which, if any, of the following arguments are valid?
Which, if any, are sound?

(a) Every Spaniard is female. Yo Yo Ma is a Spaniard. Therefore,
Yo Yo Ma is female.

(b) Every person is a person. Therefore, Paris is the capital of
France.

(c) There is no person that is not a living being. Angela Merkel is
a person. Therefore, Angela Merkel is a living being.

(d) Copenhagen is either in Denmark or in the Netherlands.
Copenhagen is not in the Netherlands. Therefore, Copen-
hagen is in Denmark.

Exercise 2. Can a valid argument have...

• false premises and a false conclusion?

• false premises and a true conclusion?

• true premises and a false conclusion?

• true premises and a true conclusion?

If you answer yes to any of these, give your own example of such
an argument. If your answer is no, explain why.

An important observation about validity is that in order to de-
termine whether a given argument in natural language is valid,
one has to look deeper than the surface. Two arguments may be
superficially similar, but differ in validity. For example, the follow-
ing argument is valid (at least assuming that north is a logical term
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and that the laws of geometry hold in all possible circumstances):

(17) a. Alaska is north of New York.
b. New York is north of Florida.
c. ∴Alaska is north of Florida.

but the following is not:

(18) a. Florida is north of no U.S. state.
b. No U.S. state is north of Alaska.
c. /∴ Florida is north of Alaska.

Clearly, no U.S. state has a very different kind of meaning from
New York. It is a QUANTIFIER, and although quantifiers and names
can occupy the same syntactic positions, they give rise to very dif-
ferent entailments. So the syntax is not always a reliable guide to
the semantics.

Furthermore, because sentences in natural language can be
AMBIGUOUS, the validity of an argument may depend on how the
sentences in it are read. For example, suppose (19a) is true. Does
it follow that (19b) is true?

(19) a. Today, Jane received five emails and responded to four.
b. Jane hasn’t responded to an email today.

In one sense, yes, but in another sense, no. (19b) can be read ei-
ther as saying that it is not the case there there is an email Jane has
responded to, or that there is an email (a particular one) that she
hasn’t responded to. This difference is a SCOPE AMBIGUITY. In the
first reading (“It is not the case that there is an email...”) the nega-
tion (n’t in hasn’t) TAKES SCOPE over the indefinite noun phrase an
email). In the second reading (“There is an email that she hasn’t
....”), the indefinite noun phrase (an email) takes scope over the
negation.

Another example of scope ambiguity is in the famous song
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“Home on the Range”:4

(20) ... and the skies are not cloudy all day.

Does this mean that over the course of a given day, the skies are
occasionally not cloudy? Or does it mean that all day, the skies
are not cloudy? It depends whether negation takes scope over the
universal quantifier all day. The formal tools that we will develop
in this book will help to elucidate the various readings that sco-
pally ambiguous sentences can have.

When a word has multiple senses, we speak of LEXICAL AMBI-
GUITY. Like scopal ambiguity, this can also muddy the question of
whether one sentence entails another. For example, consider the
following two arguments, which are identical in syntactic struc-
ture:

(21) a. Sue and Martha are sisters.
b. ∴ Sue is Martha’s sister.

versus:

(22) a. Sue and Martha are vegetarians.
b. /∴ Sue is Martha’s vegetarian.

There is at least one reading of the argument in (21) on which it
is valid, but there is no reading of the argument in (22) on which
it is valid. This is because (21) exhibits a kind of lexical ambiguity
that is absent in (22). The validity of (21) depends on whether ‘Sue
and Martha are sisters’ is read as ‘Sue and Martha are each other’s
sisters’, or ‘Sue is a sister (to someone) and Martha is a sister (to
someone)’. This ambiguity is driven by a lexical ambiguity in the
noun sister of a kind that we will discuss later in the book. Again,
we see that surface syntax is an unreliable guide to entailment.5

4We thank Jill Anderson (p.c.) for the example.
5Another issue for the semanticist to contend with is that many sentences are

VAGUE, in the sense that there is no sharp boundary between circumstances in
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Because the surface structure of sentences in natural languages
is such an unreliable guide to entailment, precise and unambigu-
ous formal languages can be a useful tool for characterizing mean-
ing in natural language. Formal languages can help in bringing
out underlying structure that is hidden in the surface form of nat-
ural language sentences. A primary aim of this book is to familiar-
ize you with these formal methods, and empower you to develop
your own variations on them.

1.2.2 Other semantic relations

Entailment is one of several different sorts of SEMANTIC RELATIONS

that two sentences can stand in. Along with entailment, there is
MUTUAL ENTAILMENT, or EQUIVALENCE. Two sentences are EQUIV-
ALENT if they are mutually entailing; whenever one is true, the
other is true, and vice versa. For example, the following pairs of
sentences are equivalent:

(23) a. I saw neither the antelope nor the snake.
b. I didn’t see the antelope and I didn’t see the snake.

(24) a. Sue is Mary’s sibling.
b. Mary is Sue’s sibling.

(25) a. John arrived before Bill left.
b. Bill left after John arrived.

There are no cases where the (a) sentences among these are false
and the (b) sentences are not, or vice versa.

Sentences can also stand in various different types of opposi-
tion to each other. For instance, consider the following sentence:

which they are true and circumstances in which they are false. For example, a
sentence like Jane is tall is neither clearly true nor clearly false if Jane’s height is
close to whatever counts as the average. As a result, it can be difficult to deter-
mine whether arguments containing vague sentences are valid. Without deny-
ing that vagueness is pervasive in natural language, we set it aside in this book.
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(26) Everybody likes chocolate.

To deny this statement, you might say:

(27) Not everybody likes chocolate.

Whenever (26) is true, (27) is false, and vice versa. Together, they
“divide the true and false among them” (cf. Horn 2018). In this
sense, (26) and (27) stand in CONTRADICTORY OPPOSITION.

A stronger denial of (26) would come from the following:

(28) Nobody likes chocolate.

Certainly this sentence couldn’t be true simultaneously with (26),
but it’s an extreme statement, so both could be false, as in the case
where some like chocolate and some do not. Sentences (26) and
(28) stand not in contradictory opposition, but rather CONTRARY

opposition.
These two sorts of opposition can be defined as follows:

(29) A sentence A stands in CONTRADICTORY OPPOSITION to a
sentence B if and only if:
It is impossible for A and B to be true together, and it im-
possible for A and B to be false together.

(30) A sentence A stands in CONTRARY OPPOSITION to a sen-
tence B if and only if:
It is impossible for A and B to be true together, but it is
possible for A and B to be false together.

Another way of thinking about contrary opposition is that it in-
volves two extremes, so that there is a middle ground, where nei-
ther hold.

As another example, consider the following sentence:

(31) Jo is tall.

A sentence that stands in contradictory opposition to (31) is Jo
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is not tall. If one is true, then the other must be false, and vice
versa. But if we replace tall with its antonym, short, producing Jo
is short, then the result stands in contrary opposition to (31). The
two sentences can’t both be true (in the same context), because
one cannot be both tall and short at the same time (as long as we
are applying consistent standards for height), but they could both
be false: Jo might be neither tall nor short, just somewhere in that
grey zone, the ‘zone of indifference’ as Sapir (1944) called it (see
e.g. Kennedy & McNally 2005).

Exercise 3. For each of the following sentences, give (i) a sentence
that stands in contrary opposition to it and (ii) a sentence that
stands in contradictory opposition to it.

(a) My pet giraffe is young.

(b) I always drink coffee in the morning

(c) The evidence proves that he is guilty.

(d) Everyone liked it.

A famous constellation of semantic relations is the SQUARE OF

OPPOSITION, shown in Figure 1.1. The square of opposition has
four corners, A, I, E, and O, which come from the Latin words
affirm and nego. The affirmative side is the lefthand side, where
we have Every semanticist is a philosopher and Some semanticist
is a philosopher, a universal and a particular (a.k.a. existential)
statement, the former above the latter in the square. On the right-
hand, negative side, we have Every semanticist is not a philoso-
pher and Some semanticist is not a philosopher, again a universal
and an existential. It has been a topic of discussion since Aristotle,
and running through the middle ages, exactly what semantic rela-
tions hold among the corners of the square; see for example Horn
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E

OI

A

Every S is a P Every S is not a P

Some S is a P Some S is not a P

Figure 1.1: The square of opposition (excluding relations among
sentences). Shorthand: S = semanticist; P = philosopher.

(2018). Nevertheless, it is fairly uncontroversial that the pairs of
sentences that are connected by a diagonal line stand in contra-
dictory opposition, while the two sentences at the top stand in
contradictory opposition.

Exercise 4. Using the definitions of contradictory and contrary
opposition, give examples of cases to show why the A and E cor-
ners of the square of opposition stand in contrary rather than con-
tradictory opposition.

What all of these semantic relations have in common is that
they are grounded in truth conditions. Entailment means that the
set of cases that makes one sentence true is a subset of the cases
that makes another sentence true; contradiction means that there
is no case relative to which both sentences are true; equivalence
means that any case that satisfies the one also satisfies the other;
etc. Since semantics is about truth, these sorts of relations are in
the purview of semantics.
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The term CONTRADICTION can be used in application to a sin-
gle sentence as well; a sentence that is a contradiction is one that
is false in every case. Here are some examples:

(32) There is a meeting on Monday and there is no meeting on
Monday.

(33) Some students are not students.

On the other hand, a TAUTOLOGY is a sentence that is always true,
such as:

(34) Either there is a meeting on Monday or there is no meeting
on Monday.

(35) Every student is a student.

It is also part of the job of the semanticist to explain which sen-
tences are self-contradictory or tautologous.

1.2.3 Entailment vs. implicature

We now discuss how to distinguish entailments from another kind
of implication, namely implicatures. Recall example (1), repeated
here as (36):

(36) Natalie Portman speaks English and Hebrew fluently, and
she also speaks Spanish, German, Japanese, and French.

This sentence implies that Natalie Portman does not speak Rus-
sian. But suppose you observed Natalie Portman in a heated con-
versation with a Russian diplomat in perfectly fluent Russian. Would
you conclude, based on this information, that (36) is false? Pre-
sumably not. So this implication is not an entailment. It derives
from the assumption that the languages listed make up an ex-
haustive list of the languages that Natalie Portman speaks. If she
did speak Russian and the author of sentence (36) knew this, they
would be saying something misleading (or “lying by omission”
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as it’s sometimes described colloquially, although arguably this is
not a form of lying). The implication that Natalie Portman doesn’t
speak Russian is an example of a CONVERSATIONAL IMPLICATURE.
Conversational implicatures are inferences that the hearer can de-
rive using the assumption that the speaker is adhering to certain
norms of conversation (Grice, 1975). Among these norms is the
Maxim of Quantity, which requires that speakers provide as much
information as needed for the information exchange (but not more).
If we’re on the subject of what languages Natalie Portman speaks,
and if she speaks Russian, then the Maxim of Quantity dictates
that this fact be mentioned.

Whether or not a given sentence gives rise to a conversational
implicature via the Maxim of Quantity depends on what is rel-
evant, as the following exchange from the film When Harry Met
Sally brings out:

Jess: So you’re saying she’s not that attractive?
Harry: No, I told you she is attractive.
Jess: But you also said she had a good personality.
Harry: She does have a good personality.
Jess: When someone’s not that attractive, they’re al-
ways described as having a good personality.
Harry: Look, if you would ask me, “What does she
look like?” and I said, “She has a good personality.”
That means she’s not attractive. But just because I
happened to mention that she has a good personal-
ity, she could be either. She could be attractive with
a good personality, or not attractive with a good per-
sonality.

Here, Harry is pointing out that the conversational implicature
from She has a good personality to She is not attractive depends
on what the QUESTION UNDER DISCUSSION (the subject matter at
hand) is. Only if the question under discussion is what she looks
like does the implicature arise.
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Grice posits four maxims in total: Quantity (say as much as is
required, but no more), Quality (do not say what you believe to be
false, and have adequate evidence for what you say), Relation (be
relevant), and Manner (avoid obscurity, avoid ambiguity, be brief,
and be orderly). These four maxims make up what Grice calls
the ‘Cooperative Principle’, which he sums up as follows: “Make
your conversational contribution such as is required, at the stage
at which it occurs, by the accepted purpose or direction of talk
exchange in which you are engaged” (Grice, 1975, 45). Grice in-
troduced the term ‘conversational implicature’ as a label for the
kind of implication that arises through reasoning on the part of
the hearer about the speaker’s adherence to the Cooperative Prin-
ciple and its constituent maxims. Although scholars have debated
what exactly the norms of conversation are over the years since
Grice published his seminal work, we have held onto the idea that
an implicature is an implication that arises crucially through rea-
soning about norms of conversation.

Exercise 5. What is the relation between the terms implication
and implicature? Explain using definitions and at least one ex-
ample of each.

Conversational implicatures differ from entailments in the fol-
lowing way: Suppose that A is true. If A entails B , then B is true for
sure, but if A conversationally implicates B , then B is not guaran-
teed to be true. Implicatures can be CANCELLED without produc-
ing a contradiction. For example, one could say, without contra-
dicting oneself:

(37) Natalie Portman speaks English, Hebrew, Spanish, Ger-
man, Japanese, and French. In fact, she speaks Russian
as well.

Here, the second sentence expresses the negation of the impli-
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cature of the first (since the implicature was itself negative: that
Natalie Portman does not speak Russian). What is to be observed
about this example is that the combination of the two sentences is
not contradictory; if your friend made these two claims in succes-
sion, you could not accuse her of contradicting herself. In other
words, the second sentence can be used successfully to CANCEL

the implicature of the first sentence that Natalie Portman does not
speak Russian. Another way of putting this is that the inference is
DEFEASIBLE (i.e., can be ‘defeated’ without contradiction).

In contrast, entailments are not defeasible. Consider:

(38) Natalie Portman speaks English, Hebrew, Spanish, Ger-
man, Japanese, and French. #In fact, she doesn’t speak
more than two languages.

(The hash-mark # here indicates that the sentence is somehow
odd in its interpretation. In general, the hash-mark is used to in-
dicate that a sentence is either semantically anomalous—makes
no sense—or pragmatically infelicitous (inappropriate) in a given
context. This symbol is the semantics/pragmatics equivalent of
the asterisk [*] used in the syntax literature to indicate that a sen-
tence is ungrammatical.) If your friend uttered these two sen-
tences in succession, she would be open to the accusation that
she was contradicting herself, because the first sentence entails
Natalie Portman speaks more than two languages.

This DEFEASIBILITY TEST is a way to to test whether the im-
plication from a sentence A to sentence B is an entailment or an
implicature. The test requires the construction of an example in
which A is followed by a negated version of B , and an intuitive
judgment from a native speaker of the language in question about
whether the constructed example is contradictory. If so, then the
implication is not defeasible, which suggests that it is an entail-
ment rather than an implicature.6 More specifically, to run the

6There are defeasible inferences that are not implicatures. Among these are
inferences based on real-world knowledge. For example, John smokes loosely
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defeasibility test for an implication from sentence A to sentence
B , the first step is to construct a text of the form A & not-B , where
not-B negates B , and & is the most appropriate conjunction (but,
and, in fact, whichever fits best).

For the purposes of the defeasibility test, we define a NEGA-
TION of a sentence as one that stands in contradictory opposition
to it. Constructing a negation, then, is not always a matter of just
adding a not. For example, let’s consider whether (39a) entails
(39b).

(39) a. Some Republicans voted ‘yes’.
b. Not all Republicans voted ‘yes’.

To run the defeasibility test on this example, we have to construct
a negated version of (39b). In this case, rather than adding a not,
as we just did, we can take one away: All Republicans voted ‘yes’.
Now we can ask whether A & not-B is SELF-CONTRADICTORY:

(40) Some Republicans voted ‘yes’; in fact, all of them did.

Would someone who uttered (40) be contradicting themselves?
No. So A & not-B is not self-contradictory in this case. So the im-
plication from (39a) to (39b) is not an entailment; it’s a conversa-
tional implicature.

This some → not all pattern is a textbook example of a so-
called SCALAR IMPLICATURE. Scalar implicatures arise when there
is a scale of alternatives – in this case some and all arranged from
weakest to strongest. In this case some is weaker than all, in the
sense that it doesn’t convey as much information about the way
the world is. By choosing the weaker alternative rather than the
stronger one, a speaker can implicate that the stronger alternative
is not true, or not a good way of describing the situation. This pat-

implies John buys cigarettes – if John smokes, then he probably buys cigarettes,
but it’s possible that he doesn’t, so the inference is defeasible. This case is not
an implicature, because it’s not an inference that crucially relies on reasoning
about the speaker’s adherence to norms of conversation.
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tern (weak→ not strong) is what constitutes a scalar implicature.
Again, we define a negation of a given sentence as one that

stands in contradictory rather than contrary opposition to it. One
very general strategy for creating one is to prefix It is not the case
that to the beginning of the sentence; It is not the case that S is
always a negated version of S. For example, It is not the case that
everyone likes to eat is a negated version of Everyone likes to eat.
Notice that this sentence is equivalent to Not everyone likes to eat
in the following sense: when one is true, the other is true too, and
when one is false, the other is false too.

An inference from A to B is defeasible if a sentence of the form
A & not-B is not contradictory. In other words, if it’s possible to
assert A and deny B without contradicting oneself, then the infer-
ence is defeasible. So to run the defeasibility test, the question to
ask a native speaker of the language about this type of example is
‘Is this example self-contradictory?’ If the answer is yes, then the
A sentence cannot be true while the B sentence is false, so the im-
plication from A to B is an entailment, rather than an implicature.

Exercise 6. Samuel Bronston was a movie producer who filed for
bankruptcy in 1964 after his very expensive epic film The Fall of
the Roman Empire failed at the box office (Solan & Tiersma, 2014,
213–221). In 1966, he was questioned under oath by his creditors
regarding his overseas assets, and the exchange went as follows:

Q. Do you have any bank accounts in Swiss banks, Mr.
Bronston?
A. No, sir.
Q. Have you ever?
A. The company had an account there for about six
months, in Zürich.
Q. Have you any nominees who have bank accounts
in Swiss banks?
A. No, sir.

Draft January 18, 2024



34 Introduction

Q. Have you ever?
A. No, sir.

It turned out that Bronston personally had had an account with
International Credit Bank in Geneva. He made deposits in it and
drew checks from it totalling up to $180,000 during the five years
in which the company was active. He closed it just before the
bankruptcy filing.

He was charged with perjury and convicted. But he appealed,
and ultimately he was acquitted by the U.S. Supreme Court, who
ruled that it is the responsibility of the questioner to press for fur-
ther information when the respondent is ‘unresponsive’.

Clearly, when he said The company had an account there...
Bronston implied something that was not true, namely that he
himself did not. But was this implication an implicature or an en-
tailment? Argue for your answer using the defeasibility test.

Exercise 7. Consider the following pairs of sentences:

(41) a. Every dog barked.
b. Every small dog barked.

(42) a. Every dog barked.
b. Every dog made a noise.

(43) a. Sam regrets winking at Dave.
b. Sam winked at Dave.

(44) a. Sam lived in London in the 1990s.
b. Sam doesn’t live in London now.

(45) a. When I was in the army, I tried LSD.
b. I was in the army.

(46) a. It’s warm.
b. It’s not hot.
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In each case, the first implies the second. Are these implica-
tions entailments? Support your answers by applying the defeasi-
bility test.

In Chapter 8, we will see another type of implication, besides
entailment and implicature, called PRESUPPOSITION. When one
sentence presupposes another, the other is treated as background
information, or in other words, taken for granted. For example,
Sue stopped smoking presupposes that Sue smoked in the past.
Presuppositions are generally considered non-defeasible just like
entailments, but they have some distinctive properties that set
them aside from ordinary entailments. We leave aside the ques-
tion of how to diagnose presuppositions until Chapter 8.

Semantics is sometimes said to be the study of what linguistic
expressions mean, while pragmatics is the study of what speakers
mean by them. (By LINGUISTIC EXPRESSIONS, we mean to include
words, phrases, and sentences—any chunk of language that forms
a syntactic unit.) The term ‘pragmatics’ can also be applied to the
study of any interaction between meaning and context, broadly
construed. There is no sharp dividing line between semantics and
pragmatics, and indeed the study of presupposition lies squarely
within their intersection. However, it is fair to say that ordinary
entailments lie in the domain of semantics proper, while implica-
tures lie in the domain of pragmatics proper. Since this is a book
about semantics, implicatures will largely be left out of the discus-
sion. We treat presuppositions in a later chapter, but our primary
focus throughout the book is on ordinary entailments. In the next
section, we describe our strategy for developing a theory that can
account for them.
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1.3 Theoretical foundations

We now describe the theoretical foundations for the family of the-
ories developed in this book. To account for entailment relations
among sentences, we will devise a system that assigns TRUTH CON-
DITIONS to sentences. The system will do so in a COMPOSITIONAL

manner, with meanings of larger expressions built up from mean-
ings of the parts. In these respects, this book presents quite an or-
dinary picture of formal semantics. The principal design feature
that distinguishes this book from the otherwise quite similar text-
book Heim & Kratzer 1998, is stylistic: We make use of an INDI-
RECT INTERPRETATION style, where natural language expressions
are mapped to expressions of a representation language, which
are in turn interpreted. In this respect the book is more like Dowty
et al. 1981, a more traditional exposition of modern formal se-
mantics. Let us explain all this in a bit more detail.

1.3.1 Truth-conditional semantics

1.3.1.1 What is truth-conditional semantics?

We said above that explaining entailment patterns in natural lan-
guage lies in the domain of semantic theory. We also said that en-
tailment could be characterized as follows: For any two arbitrary
sentences A and B : A entails B if and only if there is no case where
A is true, but B is not. In order to explain entailments, therefore,
we will define an association between sentences and cases. In
other words, we will need to associate sentences with their TRUTH

CONDITIONS, following in the logical tradition championed by the
likes of Bertrand Russell, Gottlob Frege, Alfred Tarski, Rudolf Car-
nap, Ludwig Wittgenstein, Donald Davidson, David Lewis, Richard
Montague, and Barbara Partee, who has acted as an ambassador
between philosophy and linguistics, coming from linguistics but
contributing to both fields.

At some level, truth conditions are a way of characterizing the
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meaning of a sentence. Partee (2006) motivates this idea as fol-
lows:

Knowing the meaning of a sentence does not re-
quire knowing whether the sentence is in fact true; it
only requires being able to discriminate between sit-
uations in which the sentence is true and situations
in which the sentence is false.

The truth conditions of a sentence are the situations (or cases,
as we have been referring to them) under which the sentence is
true. They don’t determine whether the sentence is in fact true,
but taken together, they determine what would have to be the case
in order for the sentence to be true. TRUTH-CONDITIONAL SEMAN-
TICS characterizes meaning by providing a systematic association
between sentences and their truth conditions.

Exercise 8. What is truth-conditional semantics?

1.3.1.2 Limitations of truth-conditional semantics

It is sometimes suggested that truth conditions are all there is to
the meaning of a sentence. Wittgenstein writes in his Tractatus:
“To understand a sentence means to know what is the case if it is
true.”7 Heim & Kratzer (1998) begin their textbook similarly: “To
know the meaning of a sentence is to know its truth conditions.”
This opening might be taken to be making the bold suggestion
that the meaning of a sentence consists entirely in its truth condi-
tions.

There is certainly more to meaning, though. In the two quota-
tions above, truth conditions are associated with sentences, rather

7Wittgenstein (1921) 4.024; our translation. The original German uses the
word ‘Satz’ where we have ‘sentence’. Published translations use ‘proposition’
instead of ‘sentence’, but the term ‘sentence’ is closer to our usage; Wittgenstein
did not distinguish between sentences and propositions.
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than with particular occasions on which these sentences are used.
A SENTENCE is a particular word sequence that could in principle
be used on many different occasions, or on none; an UTTERANCE

on the other hand is a sentence as produced on a given occasion.
An utterance is typically associated with a designated speaker, ad-
dressee, time, and location, but a sentence is not. An utterance is
also situated in a particular discourse context, where some things
are relevant and under discussion and other things are not. It
is useful to distinguish accordingly between SENTENCE MEANING

and UTTERANCE MEANING. The implicatures that an utterance
gives rise to in its context can be seen as part of its meaning. Ut-
terances have meaning beyond truth conditions.

Sentence meaning goes beyond truth conditions too. In fact, it
is not clear that all sentences even have truth conditions. Declar-
ative statements of opinion such as Vegemite is tasty, commands
like Eat your vegemite! and questions like Did you eat your veg-
emite? are among the types of sentences that have been argued
not to have truth conditions, although opinions vary on these is-
sues. We focus here on sentences that do—declarative statements
of fact like Vegemite consists mainly of brewer’s yeast extract. The
techniques we will develop for this purpose can profitably be ex-
tended to a wider range of sentence types once they are in place.

But even the meaning of declarative statements of fact goes
beyond truth conditions. For one example, consider Sue has a
twin vs. Sue is a twin (example due to Matt Mandelkern). These
two sentences have the same truth conditions, but differ in how
easy they make it to refer to Sue’s twin with a pronoun in the next
sentence.

(47) a. Sue has a twin. She’s at boarding school.
b. Sue is a twin. She’s at boarding school.

In (47a), the pronoun she is most naturally interpreted as referring
to Sue’s twin. In (47b), it has to refer to Sue.

The earliest well-known example of this kind is due to Barbara
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Partee (cited in Heim 1982b):

(48) a. I dropped ten marbles and found nine of them. ?It is
probably under the sofa.

b. I dropped ten marbles and found all of them, except
one. It is probably under the sofa.

DYNAMIC SEMANTICS models this as a difference in meaning, and
we will illustrate how this works in Chapter 9. Until then, our sys-
tem will be STATIC.

The final limitation of truth-conditional semantics that we will
mention here is that truth conditional meaning is somewhat coarse-
grained, collapsing finer-grained distinctions making up a phe-
nomenon known as HYPERINTENSIONALITY (e.g. Muskens 2005).
For example, any two sentences expressing mathematical truths
(2+ 2 = 4 and e iπ = −1) have the same truth conditions—they’re
true in every possible circumstance—but they have different mean-
ings. Here is an argument for the claim that they have different
meanings: The sentence ‘Ed knows that 2+ 2 = 4’ doesn’t entail
‘Ed knows that e iπ = −1’; therefore, 2+ 2 = 4 must mean some-
thing different from e iπ = −1. We won’t have much to say about
hyperintensionality in this book, but we acknowledge that it is an
important dimension of meaning.

Exercise 9. In what ways does meaning go beyond truth condi-
tions? Discuss three.

1.3.2 Compositionality

An important goal for this book is to develop systems for natu-
ral language semantics that are COMPOSITIONAL in the sense that
the meaning of a compound expression is a function of the mean-
ings of its parts and the way they are syntactically combined (Par-
tee, 1984, 281). Truth conditions will be assigned to sentences by
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combining together the meanings of smaller expressions (noun
phrases, verb phrases, etc.).

Thanks to compositionality, along with the RECURSIVE nature
of the grammar and associated semantic composition system that
we will build, the parts can be combined and re-combined in in-
finitely many new ways. (In general, a RECURSIVE system is one
in which a concept or a procedure can be defined in terms of it-
self, while avoiding circularity. We will illustrate how the con-
cept of recursion applies in our case when we present the systems
in detail starting in Chapter 3.) In this respect, the systems you
will encounter in this book reflect the human capacity to produce
and understand infinitely many new sentences (Chomsky, 1957,
1965), a core characteristic of human language.

An analogy from arithmetic might help to illustrate what it
means for a semantic theory to be compositional. For the pur-
poses of discussion, we can think of the ‘meaning’ of the com-
pound expression 6*(3+2) as the number thirty. One of the parts
of this expression is the digit 6, whose meaning is the number six;
another part is the compound expression 3+2, whose meaning is
the number five. The meaning of 6*(3+2) only depends on the
meanings (six and five) of its parts (6 and 3+2) and how they are
combined (in this case, by multiplication). It does not depend on
anything else, such as the length or complexity of the subexpres-
sions, or the meanings of its surroundings.

For example, the expression 3+2 has the same meaning as
the expression 5, and these meanings don’t depend on what sur-
rounds these expressions. Whether we enter 6*(3+2) into a calcu-
lator or 6*5, the result is the same. In general, in a compositional
system, when we substitute one part of an expression by some-
thing else that has the same meaning, the meaning of the whole
expression remains the same. This is called the PRINCIPLE OF SUB-
STITUTIVITY.
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Exercise 10. What would it look like if the principle of substitutiv-
ity was violated? Give an example from math.

Exercise 11. What does it mean for a theory of meaning to be com-
positional?

Depending on how we make the concept of ‘meaning’ precise,
we obtain different notions of compositionality. In this book, we
will define semantic theories, sets of rules, that assign a SEMAN-
TIC VALUE, or equivalently, DENOTATION, to each grammatical ex-
pression of the language. For instance, these rules will assign a
proper noun like Sue a particular individual as its denotation; we
will say that the noun DENOTES that individual. A common noun
like cat, on the other hand, does not pick out any particular in-
dividual but rather could apply truthfully to any number of indi-
viduals, so its denotation is more like a set of individuals. (A set
is just an unordered collection of objects, as we discuss in Chap-
ter 2.) Which set? The set of actual cats currently in existence at
the time of writing? We can imagine various counterfactual cir-
cumstances in which the set of cats is different. With respect to
those circumstances, the word cat would not pick out the set of
cats in the actual world currently in existence at the time of writ-
ing, but some other set. So we will say that denotations depend
on the circumstance; an expression denotes whatever it denotes
with respect to a given circumstance.

The denotation of an expression with respect to a particular
circumstance is called the EXTENSION of the expression at that cir-
cumstance; the INTENSION of an expression encompasses infor-
mation about its extensions at each of the various circumstances.
One way of thinking about the intension of an expression is as a
function (as defined in Chapter 2) that takes as input a circum-
stance, and returns the extension of the expression in question
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at that circumstance. Sometimes, the extension of a complex ex-
pression depends not only on the extensions of its parts, but also
on their intensions:

(49) a. Johnny wants to find a unicorn.
b. Johnny wants to find a dragon.

Clearly these sentences don’t have the same meaning (one might
be true while the other one is false). By the principle of substi-
tutivity, unicorn and dragon can’t have the same meaning either.
Since their extension with respect to reality is the empty set, this
extension cannot be their meaning. Their intensions, however,
differ, and so intensions are closer to meanings than extensions
are.

A compositional system for assigning semantic values to com-
plex expressions that allows the extension of a complex expression
to depend on the intension of one or more of its parts is called IN-
TENSIONAL. A compositional system in which the extensions of
complex expressions depend only on the extensions of their parts
is called EXTENSIONAL. Our compositional system will be exten-
sional until Chapter 13, when we will incorporate tools that allow
us to treat intensional phenomena.

Now, how is the meaning of a complex expression determined
from the meanings of the parts? Frege (1891) described semantic
composition of two parts metaphorically in terms of ‘saturation’;
one part is somehow missing something (‘unsaturated’), and the
other part is the missing piece (and thus ‘saturates’ it). A similar
idea goes back at least to Aristotle’s division of a sentence into sub-
ject and predicate, and shows up in modern linguistics in syntax
rules such as S→NP VP. Here is how Frege puts it:

Statements in general [. . . ] can be imagined to be
split up into two parts; one complete in itself, and the
other in need of supplementation, or “unsaturated.”
Thus, for example, we split up the sentence “Caesar
conquered Gaul” into “Caesar” and “conquered Gaul.”
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The second part is “unsaturated” — it contains an empty
place; only when this place is filled up with a proper
name, or with an expression that replaces a proper
name, does a complete sense appear.8

Frege proposed to model this “saturation” using mathemati-
cal FUNCTIONS, which we will discuss in Chapter 2. We will see
exactly how this works in Chapter 6.

1.3.3 Indirect interpretation

Finally, let us say a word about the style of analysis that we will
adopt in this book, called INDIRECT INTERPRETATION. This is a
style in which a formal language (which we refer to as a REPRESEN-
TATION LANGUAGE) serves as an intermediary between the natural
language of interest and the theory of its semantics.

To explain this more fully, let us begin with the distinction be-
tween OBJECT LANGUAGE and META-LANGUAGE. In order to give
a theory of meaning for a given language (say, English), we must
somehow express that theory. The language in which the theory is
expressed is called the META-LANGUAGE, and the language being
characterized is called the OBJECT LANGUAGE. In other words, the
OBJECT LANGUAGE is the language that we are talking about, while
the language in which we theorize about the object language is
the META-LANGUAGE. The related term META-LINGUISTIC is used
to describe discourse that is about language.

In this book, we are using English (with some mathematical
notions mixed in) to theorize about English, so the object lan-
guage is English, and so is the meta-language (with some math-
ematical notions mixed in). But if we were developing a theory of
French, then French would be the object language, and we might
still use English to talk about it. If this book were translated into
Spanish, then Spanish would be the meta-language, even if the
example sentences were left in English.

8Translation by Black & Geach (1961), p. 31.
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Exercise 12. Underline the object-language expressions in the fol-
lowing meta-linguistic statements.

(a) The word boy contains three letters.

(b) John said, “I am hungry.”

(c) John said that he was hungry using the word hungry.

(d) The English first person pronoun rhymes with eye.

As we are interested here in natural language semantics, a nat-
ural language like English or Swahili will be the language whose
semantics we want to characterize. But we will use another lan-
guage with its own semantics as an intermediary between this nat-
ural language and the language in which the theory is expressed.
The intermediary is a formal language (an artificial language de-
fined by clear and explicit rules), serving as what we call a REP-
RESENTATION LANGUAGE. Our formal language will be a LOGIC,
roughly, a formal language in which it is clearly defined which ar-
guments are valid and which are not.

Part of our task as theorists, then, is to specify the syntactic
and semantic rules for our representation language. When we are
laying out the rules of a formal logic, we are again talking about
a language, albeit a formal language. In that setting too, there is
an object language and a meta-language; it’s just that the object
language happens to be a formal logic. So in the picture we build
up in this book, there will actually be two languages that play the
role of ‘object language’: the natural language whose semantics
we aim to characterize (a fragment of English), and the formal lan-
guage with which we represent the meaning, i.e., the ‘representa-
tion language’. To avoid confusion, we will refer to these as the
‘natural language’ and the ‘representation language’, respectively,
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rather than as the ‘object language’.
Our theory will thus consist of two mappings:

• a mapping from expressions of a natural language to ex-
pressions of the representation language

• a mapping from representation language expressions to se-
mantic values (described using the meta-language, which
incorporates elements from set theory)

This method is known as INDIRECT INTERPRETATION, and it is the
method used in Richard Montague’s paper, ‘The Proper Treatment
of Quantification in Ordinary English’ (Montague, 1974b). An-
other way to go about things would be to skip the logic and give
the interpretations of object language expressions directly using
our meta-language, as Richard Montague did in his paper ‘English
as a Formal Language’ (Montague, 1974a). That style is known as
DIRECT INTERPRETATION, and it is adopted in the Heim & Kratzer
(1998) textbook.

The indirect interpretation style offers a number of practical
technical advantages over direct interpretation. The main advan-
tage derives from the fact that natural language is ambiguous and
vague, while our logical representation language is not. Having
a non-vague, non-ambiguous representation language makes it
possible to give a coherent treatment of entailment—our core phe-
nomenon of interest—as well as related, important notions like
contradictory vs. contrary opposition and equivalence. A more
practical advantage is that it allows our meaning representations
to be more concise, so they can fit on a tree diagram showing the
compositional derivation of the meaning of a sentence. Finally,
and importantly, it also meshes well with the Lambda Calcula-
tor, a pedagogical software application that is integrated with this
book.
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Exercise 13. What is the difference between direct and indirect in-
terpretation? Which style will be used in this book?

What to expect

Consider this book a starter kit for a theory of semantics. If you
understand the foundations well, you will be able to modify them
to suit your purposes. In trying to extend the theory to account
for a certain phenomenon, you may well find yourself making a
fundamental contribution to the theory of natural language se-
mantics.
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2 ∣ Sets, relations, and functions

2.1 Introduction

In the previous chapter, we defined entailment as follows: A en-
tails B if and only if there is no circumstance in which A is true
but B is not. An equivalent way of characterizing entailment is in
terms of SUBSET: A entails B if and only if the set of circumstances
where A is true is a subset of the set of circumstances where B is
true. That the premise is a subset and not a superset of the con-
clusion reflects the fact that premises may be more specific than
conclusions: being more specific amounts to being true in fewer
circumstances. Characterizing entailment is only one of the many
uses for set-theoretic concepts in semantic theorizing; there are
many more.

This chapter provides a brief introduction to set theory, in-
cluding relations between sets like SUBSET and SUPERSET, as well
as operations on sets like INTERSECTION, UNION and COMPLEMENT.
We will also use sets to characterize RELATIONS and FUNCTIONS.
Functions play a particularly important role in semantic theoriz-
ing, as they give us a way of making precise the idea that compo-
sition somehow involves saturation of something unsaturated.

Set theory not only lies at the foundation of the mathemati-
cal concepts used in formal semantics (and indeed of all of math-
ematics); it can also be applied fairly directly to some linguistic
puzzles. We will introduce such a puzzle here.
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2.2 Negative polarity items: the puzzle

There are certain words of English, including any, ever, yet, and
anymore, which can be used in negative sentences but not all pos-
itive sentences (at least in standard varieties of English):

(1) a. Chrysler dealers don’t ever sell any cars anymore.
b. *Chrysler dealers ever sell any cars anymore.

The italicized words in these examples are called NEGATIVE PO-
LARITY ITEMS (NPIs). The contrast between (1a) and (1b) shows
that negative polarity items are licensed in the presence of nega-
tion. Specifically, they are licensed in ENVIRONMENTS containing
negation. An environment is the part of a sentence that surrounds
a given constituent (in this case, the constituent that contains the
NPI).

It’s not just environments containing negation where NPIs can
be found. Here is a sampling of the data (Ladusaw, 1980).

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

No one
At most three people

*Someone
*At least three people
*Many students

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

who had ever read anything about

phrenology attended any of the lectures.

(3) I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

never
rarely
seldom

*usually
*always
*sometimes

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ever eat anything for breakfast anymore.

(4) a. Susan finished her homework { without
*with

} any help.

b. Susan voted{ against
*for

} ever approving any of the pro-
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posals.

(5) John will replace the money

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

before
if

*after
*when

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

anyone ever misses

it.

(6) It’s

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hard
difficult

*easy
*possible

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

to find anyone who has ever read anything

much about phrenology.

(7) John

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

doubted
denied

*believed
*hoped

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

that anyone would ever discover that the

money was missing.

(8) It

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

is unlikely
is doubtful
amazed John

*is likely
*is certain
is surprising

*is unsurprising

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

that anyone could ever discover that

the money was missing.

So, along with negation, there are words like hard and doubt and
unlikely which license negative polarity items. What could these
words have in common?

The issue is made a bit more complex by the fact that words
differ as to where they license negative polarity items. Words like
every, some, and no belong to the syntactic category of DETERMIN-
ERS (as opposed to nouns, verbs, adjectives, etc.), and these de-
terminers differ as to where they license NPIs. For the purposes
of discussion, let us assume the following syntactic structure for
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sentences like Every musician snores:

S

DP

D

every

NP

musician

VP

snores

A determiner like every is of category D (for determiner), and we
assume that it combines with an NP (for ‘noun phrase’, used in
this book for a phrase headed by a noun but excluding any deter-
miners) to form a DP (for ‘determiner phrase’, used in this book for
a phrase headed by a determiner). We are thus following the ‘DP
hypothesis’ (Abney, 1987), according to which a phrase like every
musician is headed by the determiner every rather than the noun
musician, as opposed to the ‘NP hypothesis’, according to which
phrases like every musician are headed by nouns, hence NPs. The
term “noun phrase” is sometimes used to refer to things like every
musician, regardless of whether they are analyzed as NPs or DPs.
In this book, we sometimes follow this practice in cases where it
will not lead to confusion, but reserve the term NP for things like
musician, and DP for things like every musician. The DP and the
VP together form a complete sentence, of category S. (The trian-
gles in the trees indicate that there is additional structure that is
not shown in full detail—in this case, the links from NP to N and
VP to V.)

No licenses NPIs throughout the sentence, in both the NP and
the VP:

(9) a. No [ student who had ever read anything about phrenol-
ogy ] [ attended the lecture ].

b. No [ student who attended the lecture ] [ had ever read
anything about phrenology ].
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And some fails to license NPIs both in the NP and in the VP:

(10) a. *Some [ student who had ever read anything about phrenol-
ogy ] [ attended the lecture ].

b. *Some [ student who attended the lecture ] [ had ever
read anything about phrenology ].

But every licenses NPIs only in the NP, not in the VP:

(11) a. Every [ student who had ever read anything about phrenol-
ogy ] [ attended the lecture ].

b. *Every [ student who attended the lectures ] [ had ever
read anything about phrenology ].

This shows that the ability to license negative polarity items is not
a simple yes/no matter for each lexical item.

Building on work by Fauconnier (1975), Ladusaw (1980) illus-
trated a correlation between NPI licensing and “direction of en-
tailment”. A simple, positive sentence containing the word cel-
list will typically entail the corresponding sentence containing the
word musician, as shown by the validity of the following argu-
ment:1

(12) Mary is a cellist.
∴Mary is a musician.

The “direction of entailment” can be either DOWNWARD or UP-
WARD. To understand the idea behind these labels, let us arrange
terms like cellist and musician visually in a TAXONOMIC HIERAR-
CHY (an arrangement of categories specifying which categories

1As mentioned in Chapter 1, there are a number of different precise notions
of consequence. Among them are ‘logical consequence’ and ‘necessary conse-
quence’. The argument in (12) is ‘necessarily valid’ because it is impossible for
the conclusion to be false when the premise is true, assuming that being a mu-
sician is an intrinsic part of what it means to be a cellist. But it is not ‘logically
valid’, because it is not valid solely in virtue of its form. Similar remarks apply to
subsequent examples in this chapter.
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are sub-categories of others, sometimes used in biology to cap-
ture the organization of flora or fauna into categories) with more
specific concepts below more general concepts.

musician

string player

cellist violinist ...

brass player

trombonist ...

...

In terms of this visual representation, the inference in (12) pro-
ceeds from lower (more specific) to higher (more general), hence
“upwards”. An entailment by a sentence of the form [ ... A ... ] to
a sentence of the form [ ... B ... ] where A is more specific than B
can thus be labelled an UPWARD ENTAILMENT. The validity of the
following argument illustrates another upward entailment:

(13) Some cellists snore.
∴ Some musicians snore.

But negation and the determiner no reverse the entailment pat-
tern; witness the validity of the following arguments:

(14) Mary isn’t a musician.
∴Mary isn’t a cellist.

(15) No musicians snore.
∴No cellists snore.

The entailments here are called, as you might guess, DOWNWARD

ENTAILMENTS, because they go from more general (higher) to more
specific (lower).

We can also consider direction of entailment between sen-
tences varying only in the verb phrase (VP). If we think of snores
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and snores loudly as being arranged in the same kind of taxonomic
hierarchy, where the more general terms are higher and the more
specific terms are lower, we see that snores loudly is below snores,
because every case of snoring loudly is a case of snoring.

snores

snores loudly snores softly

In simple sentences like the following, replacing a specific VP with
a more general one yields a valid argument, so the VP is in an
UPWARD-ENTAILING ENVIRONMENT.

(16) Ed snores loudly.
∴ Ed snores. (upward)

But negation reverses the direction of entailment, so that the VP
is then in a DOWNWARD-ENTAILING ENVIRONMENT:

(17) Ed doesn’t snore.
∴ Ed doesn’t snore loudly. (downward)

It turns out that there is a correlation between NPI-licensing
and downward entailment: NPIs are licensed in downward-entailing
environments. Compare the following examples to the NPI data
for no, some and every above.

(18) a. No musician snores.
∴No cellist snores. (downward)

b. No musician snores.
∴No musician snores loudly. (downward)

(19) a. Some cellists snore.
∴ Some musicians snore. (upward)

b. Some musician snores loudly.
∴ Some musician snores. (upward)
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(20) a. Every musician snores.
∴ Every cellist snores. (downward)

b. Every musician snores loudly.
∴ Every musician snores. (upward)

Observe that there is an exact match between the environments
that are downward-entailing and those in which negative polarity
items are licensed. This exact match is in accordance with the
FAUCONNIER-LADUSAW GENERALIZATION: An expression licenses
negative polarity items wherever it licenses downward entailments.

What we have said so far about what it means for one expres-
sion to be “downward” of another one is that it is more “specific”.
But as Farkas (2002, 213) writes, “the notion of specificity in lin-
guistics is notoriously non-specific.” We can state this idea more
precisely by making use of the certain technical vocabulary, in
particular, the concepts of SET and SUBSET. A SET is an abstract
collection of distinct objects, which are called the MEMBERS or EL-
EMENTS of that set. One set is a SUBSET of another set if and only
if every member of the first is a member of the second (or in other
words: there is nothing in the first that isn’t also in the second, al-
though there may be elements of the second that are not in the
first).

Let us assume that words like cellist and musician denote sets,
such as the set of cellists and of musicians. While the set of cellists
in one circumstance may differ from the set of cellists in another,
it does not matter which circumstance we pick, since regardless
of our choice, every cellist is a musician; so, every member of the
set denoted by cellist is bound to be a member of the set denoted
by musician. Hence the denotation of cellist is always (in all cir-
cumstances) a subset of the denotation of musician. Assuming
that verb phrases like snores and snores loudly denote sets as well,
we again have a subset relation: every member of the set denoted
by snores loudly (i.e. every loud snorer) is a member of the set de-
noted by snores (i.e. is a snorer).

In the next section, we turn to a more technical presentation
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of sets and related notions. Not only will these notions help to elu-
cidate what we have said so far, they will also allow us to charac-
terize the meaning of no, some and every in a way that helps to ex-
plain why they are downward-entailing where they are. These no-
tions will also lay the foundations for the rest of this book, as our
language for describing denotations (our META-LANGUAGE) builds
on concepts and notational devices related to sets.

2.3 Sets

As mentioned above, a SET is an abstract collection of distinct
objects, which are called the MEMBERS or ELEMENTS of that set.2

Here is an example of a set:

{2,7,10}
This set contains three elements: the number 2, the number 7,
and the number 10. The members of the set are separated by com-
mas and enclosed by curly braces. To express the fact that 2 is a
member of this set, we write:

2 ∈ {2,7,10}

This expression is a declarative statement, which can be read aloud
as follows: ‘2 is a member of the set containing 2, 7 and 10.” To ex-
press the fact that 3 is not a member of this set, we write:

3 /∈ {2,7,10}

This statement can be read, ‘3 is not an element of the set con-
taining 2, 7 and 10.’

The elements of a set are not ordered. Thus this set:

{2,5,7,4}
2The material in this section is inspired heavily by Partee et al. (1990), where

you will find an excellent and a more in-depth presentation of these and related
issues.
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is exactly the same set as this set:

{5,2,4,7}

Listing an element multiple times does not change the member-
ship of the set. Thus:

{3,3,3,3,3}
is exactly the same set as this one:

{3}

Sets can be very big or very small. Here is another example of
a set:

{2,4,6,8, . . .}
The ELLIPSIS NOTATION (. . . ) signals that the list of elements con-
tinues according to the pattern. So this set is infinite; it contains
all positive even numbers. But a set need not have multiple mem-
bers; it can have just one element:

{3}

This set contains just the number 3. If a set has only one member,
it is called a SINGLETON; we also say that the set {3} is the single-
ton of 3. A set can even be empty. The set with no elements at all
is called the EMPTY SET, written either like this:

{}

or like this:
∅

The CARDINALITY of a set is the number of elements it contains.
The cardinality of the empty set, for example, is 0. Cardinality is
expressed by vertical bars surrounding the set: If A is a set, then
∣A∣ is the cardinality of A. So, for example:

∣{5,6,7}∣ = 3
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This formula can be read, ‘The cardinality of the set containing 5,
6, and 7 is 3.’

The members of a set can be all sorts of things. A set can, for
example, contain another set as an element. The following set:

{2,{1,3,5}}

contains two elements, not four. One of the elements is the num-
ber 2. The other element is a three-membered set. A set could
also, of course, contain the empty set as an element, as the follow-
ing set does:

{∅,2}
This set has two elements, not one.

Exercise 1. What is the cardinality of the following sets?

(a) {2,3,{4,5,6}}

(b) ∅

(c) {∅}

(d) {∅,{3,4,5}}

(e) {∅,3,{4,5}}

In the kind of set theory that linguists typically use, elements
may be either concrete (like the beige 1992 Toyota Corolla the first
author sold in 2008, you, or your computer) or abstract (like the
number 2, the English phoneme /p/, or the set of all professional
soccer players of the 1980s). Partee et al. (1990) also point out:

A set may be a legitimate object even when our knowl-
edge of its membership is uncertain or incomplete.
The set of Roman emperors is well-defined even though
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its membership is not widely known . . . , although it
may be hard to find out who belongs to it. For a set
to be well-defined it must be clear in principle what
makes an object qualify as a member of it . . .

The only kinds of things that cannot be members of a given
set are certain other sets. This restriction is needed in order to
avoid problems such as RUSSELL’S PARADOX (there cannot be a
set of all sets that are not members of themselves, since that set
could neither contain nor fail to contain itself). For now, we will
set this paradox aside. In Chapter 5, we will introduce a simplified
version of Russell’s solution to his paradox called type theory that
constrains the conditions under which one set can be a member
of another.

When we can’t list all of the members of a set, we can use
PREDICATE NOTATION (also called SET-BUILDER NOTATION) to de-
scribe the set of things meeting a certain condition. To do that,
we place a VARIABLE – a symbol that serves as a placeholder – on
the left-hand side of a vertical bar, and put a description contain-
ing the variable on the right-hand side. In principle, we are free
to choose any symbol we like to serve as a variable, but typical
choices for numbers are single letters in the middle of the alpha-
bet like n, m, and k. Let us use n as our variable. For example,
the following expression describes the set of integers below zero
(Z designates the set of integers):

{n ∣ n ∈Z and n < 0}

This expression can be read, ‘the set of all n such that n is an inte-
ger and n is less than 0’. The vertical bar can be read as ‘such that’
in this context; it is sometimes written as a colon. The same set
could be written as

{−1,−2,−3, . . .}
showing that the set of elements stretches out infinitely in the neg-
ative direction.
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Two sets are EQUAL if and only if they have the same members.
Thus it does not matter which order we use if we list the members
of a set, and which notation we use to begin with. For example,
the expressions {1,2,3}, {1,3,2}, and {3,2,1} all denote the same
set.

It is important to distinguish between elements and subsets.
The set {2,3} is not an element, but rather a subset of the set {2,3,4}.
In general, as we have said earlier, a set A is a SUBSET of a set B if
and only if every member of A (if any) is a member of B . Put more
formally:

A ⊆B iff for all x: if x ∈ A then x ∈B .

This formulation uses several pieces of mathematical jargon. The
word “iff” is shorthand for “if, and only if”. The symbol ⊆ is pro-
nounced “is a subset of”. The symbol ∈ is pronounced “is an ele-
ment of” or “is a member of” or “is contained in”.

Let a, b, and c stand for three arbitrary distinct things, such
as your three favorite moments, the Three Musketeers, or three
particular sets of numbers. Here are some true statements:

{a,b} ⊆ {a,b,c}

{b,c} ⊆ {a,b,c}
{a} ⊆ {a,b,c}

Things get slightly trickier to think about when the elements of the
sets involved are themselves sets. Here is another true statement:

{a,{b}} /⊆ {a,b,c}

(The slash across the ⊆ symbol negates it, so /⊆ can be read ‘is not
a subset of’.) The reason that {a,{b}} is not a subset of {a,b,c}
is that the first has a member that is not a member of the second,
namely {b}. It is tempting to think that {a,{b}} contains b as an
element but this is not correct. The set {a,{b}} has exactly two el-
ements, namely: a and {b}. The set {b}, called the SINGLETON of
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b, is not the same thing as b. One is a set and the other might not
be. (Whether b is a set is open at this point, since we have made
no assumptions about what b is.) Likewise, the set {{b}} is not
the same thing as the set {b}, and so on. This example can also
help clarify the difference between membership and subsethood.
A member or element (∈) of a set is not a subset (⊆) of that set. Un-
like subsethood, membership is not transitive. For example, the
set {{b}} has a single element, {b}, which in turn has a single el-
ement, b. In this example, b is an element of {b} but not of {{b}},
and {b} is an element, but not a subset, of {{b}}. As for b itself, it
is not a subset of anything (assuming it is not itself a set).

The following is a true statement:

{a,{b}} ⊆ {a,{b},c}

Every element of {a,{b}} is an element of {a,{b},c}, as we can
see by observing that the following two statements hold:

a ∈ {a,{b},c}

{b} ∈ {a,{b},c}
The empty set is a subset (not an element!) of every set. So, in

particular:
∅ ⊆ {a,b,c}

Since the empty set doesn’t have any members, it never contains
anything that is not an element of another set, so the definition of
subset is always trivially satisfied. So whenever anybody asks you,
“Is the empty set a subset of...?”, you can answer “yes” without
even hearing the rest of the sentence. (If they ask you whether
the empty set is an element of some other set, then you’ll have to
look among the elements of that other set in order to decide.)

By this definition, every set is actually a subset of itself, even
though normally we might first think of two sets of different sizes
when we think of the subset relation. So the following statement
is true:

{a,b,c} ⊆ {a,b,c}
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To avoid confusion, it helps to distinguish between subsets and
proper subsets. A is a PROPER SUBSET of B , written A ⊂ B , if and
only if A is a subset of B and A is not equal to B :

A ⊂B iff (i) for all x: if x ∈ A then x ∈B and (ii) A ≠B .

For example, {a,b,c} ⊆ {a,b,c}but it is not the case that {a,b,c} ⊂
{a,b,c}.

When we collect all of the subsets (proper or not) of a given
set S into a set, that is called the POWERSET of S, written ℘(S) or
sometimes 2S . The latter notation is motivated by the fact that
if a set has n elements, then its powerset has 2n elements. For
example, if a set has 2 elements then its powerset has 4 elements:

℘({a,b}) = {{},{a},{b},{a,b}}

The reverse of subset is superset. A is a SUPERSET of B , written
A ⊇B , if and only if every member of B is a member of A.

A ⊇B iff for all x: if x ∈B then x ∈ A.

Two sets are identical whenever they have the same members.
This means we have A =B if and only if both A ⊆B and A ⊇B .

And as you might expect, A is a PROPER SUPERSET of B , written
A ⊃B , if and only if A is a superset of B and A is not equal to B .

A ⊃B iff (i) for all x: if x ∈B then x ∈ A and (ii) A ≠B .

The word every can be thought of as a relation between two
sets X and Y which holds if X is a subset of Y , i.e., if every member
of X is a member of Y . The sentence every musician snores, for
instance, expresses that every member of the set of musicians is a
member of the set of people who snore. This type of scenario can
be depicted as follows:
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m
usicians

snorers

Subset and superset are RELATIONS BETWEEN SETS, which ei-
ther hold or fail to hold. Other elements of the set theoretic vo-
cabulary express OPERATIONS ON SETS, producing a new set from
one or more sets. The principal operations on sets include inter-
section, union, and complement.

The INTERSECTION of A and B , written A ∩B , is the set of all
entities x that are both a member of A and a member of B .

A∩B = {x ∣ x ∈ A and x ∈B}

For example:
{a,b,c}∩{b,c,d} = {b,c}

{b}∩{b,c,d} = {b}

{a}∩{b,c,d} =∅

{a,b}∩{a,b} = {a,b}

Intersection is very useful in natural language semantics. It can be
used as the basis for a semantics of and. For example, if someone
tells you that John is a lawyer and a doctor, then you know that
John is in the intersection between the set of lawyers and the set of
doctors. If the circle on the left in the following diagram represents
the set of doctors, and the circle on the right represents the set of
lawyers, then John is located somewhere in the area where the two
circles overlap, as long as he is both a doctor and a lawyer. (This
way of representing the relations among sets is called an EULER

DIAGRAM.)
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doctors lawyers

The English determiner some can be thought of in terms of
intersection as well, as a relation between two sets X and Y which
holds iff there is some member of X which is also a member of
Y , i.e., iff the intersection between X and Y is non-empty. For
instance, some musician snores is true iff there is some individual
which is both a musician and a snorer.

The determiner no can be thought of as a relation between
two sets X and Y which holds if the two sets have no members in
common, in other words, iff the intersection is empty. So no musi-
cian snores holds iff there is no individual who is both a musician
and a snorer. In that case, the two sets are DISJOINT, like so:

musicians snorers

Exercise 2. Here are three Euler diagrams:

(a) (b)
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(c)

And here are three statements in set-theoretic language:

1. A∩B =∅

2. A∩B ≠∅

3. A ⊆B

For each of the Euler diagrams, say (i) which of the three set-
theoretic statements it matches, and (ii) which of the following
three determiners it best represents: some, every, or no. (The
dashed line represents A and the dotted line represents B .)

Another useful operation on sets is union. The UNION of A
and B , written A∪B , is the set of all things that are either in A or
in B (or both).

A∪B = {x ∣ x ∈ A or x ∈B}

For example:
{a,b}∪{d ,e} = {a,b,d ,e}

{a,b}∪{b,c} = {a,b,c}

{a,b}∪∅ = {a,b}

As you can guess, union can be used to give a semantics for or. If
someone tells you that John is a lawyer or a doctor, then you know
that John is in the union of the set of lawyers and the set of doctors.
(You might normally assume that he is not in the intersection of
doctors and lawyers though – that he is either a doctor or a lawyer,
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but not both. This is called an exclusive interpretation for or, and
we will get to that later on.)

Exercise 3. Use D to denote the set of doctors, L to denote the set
of lawyers, and R to denote the property of being rich. Which of
the following best captures the meaning of Every doctor and every
lawyer is rich?

(a) (D ∩L) ⊆R

(b) (D ∪L) ⊆R

(c) R ⊆ (D ∩L)

(d) R ⊆ (D ∪L)

We can also talk about SUBTRACTING one set from another.
The DIFFERENCE of A and B , written A −B or A ∖B , is the set of
all things that are in A but not in B .

A−B = {x ∣ x ∈ A and x /∈B}
For example, {a,b,c}−{b,d , f } = {a,c}. This is also known as the
RELATIVE COMPLEMENT of A and B , or the result of subtracting B
from A. A −B can also be read, ‘A minus B ’. Sometimes people
speak simply of the COMPLEMENT of a set A, without specifying
what the complement is relative to. This is still implicitly a relative
complement; it is relative to some assumed UNIVERSE of entities.
The complement of A can be written Ā.3

Exercises on sets

The following exercises are taken from Partee et al. 1990, Mathe-
matical Methods in Linguistics.

3The notation A′ is also sometimes used for the complement.
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Exercise 4. Given the following sets:

A = {a,b,c,2,3,4} E = {a,b,{c}}
B = {a,b} F =∅
C = {c,2} G = {{a,b},{c,2}}
D = {b,c}

classify each of the following statements as true or false.

(a) c ∈ A (g) D ⊂ A (m) B ⊆G
(b) c ∈ F (h) A ⊆C (n) {B} ⊆G
(c) c ∈ E (i) D ⊆ E (o) D ⊆G
(d) {c} ∈ E (j) F ⊆ A (p) {D} ⊆G
(e) {c} ∈C (k) E ⊆ F (q) G ⊆ A
(f) B ⊆ A (l) B ∈G (r) {{c}} ⊆ E

Exercise 5. Consider the following sets:

S1 = {{∅},{H}, H} S6 =∅
S2 = H S7 = {∅}
S3 = {H} S8 = {{∅}}
S4 = {{H}} S9 = {∅,{∅}}
S5 = {{H}, H}

(a) Of the sets S1−S9, which are members of S1?

(b) Which are subsets of S1?

(c) Which are members of S9?

(d) Which are subsets of S9?

(e) Which are members of S4?

(f) Which are subsets of S4?
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Exercise 6. Given the sets A, ...,G from above, repeated here:

A = {a,b,c,2,3,4} E = {a,b,{c}}
B = {a,b} F =∅
C = {c,2} G = {{a,b},{c,2}}
D = {b,c}

list the members of each of the following:

(a) B ∪C

(b) A∪B

(c) D ∪E

(d) B ∪G

(e) D ∪F

(f) A∩B

(g) A∩E

(h) C ∩D

(i) B ∩F

(j) C ∩E

(k) B ∩G

(l) A−B

(m) B − A

(n) C −D

(o) E −F

(p) F − A

(q) G −B

Exercise 7. Let A = {a,b,c}, B = {c,d}, C = {d ,e, f }. Calculate the
following:

(a) A∪B

(b) A∩B

(c) A∪(B ∩C)

(d) C ∪ A

(e) B ∪∅

(f) A∩(B ∩C)
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(g) A−B

(h) Is a a member of {A,B}?

(i) Is a a member of A∪B?

2.4 Negative polarity items revisited

We have characterized the truth conditions of the determiners no,
some and every as follows:

• Every X Y is true if and only if X is a subset of Y .

• Some X Y is true if and only if there is a non-empty inter-
section between X and Y .

• No X Y is true if and only if X and Y have an empty inter-
section.

Given this, consider what happens when we consider a subset X ′

of X (e.g., if X is the set of musicians, take X ′ to be the set of cel-
lists). Every X Y is true if and only if X is a subset of Y . If that is
true, then any subset X ′ of X will also be a subset of Y . This can
be visualized as in the following Euler diagram. Assume it is true
that all musicians snore. Then the set of musicians is a subset of
the set of snorers. And since all cellists are musicians, the set of
cellists is a subset of the set of musicians:
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cellists

musicians

snorers

So, from Every musician snores it follows that Every cellist snores.
In this particular example, we have taken X to be the set of mu-
sicians, X ′ the set of cellists, and Y the set of snorers. In general,
every X Y entails every X ′ Y whenever X ′ is a subset of X . We say
that every is LEFT DOWNWARD MONOTONE (“left” because it has
to do with the expression on the left, X , rather than the expres-
sion on the right, Y .) In general, a determiner δ is left downward
monotone iff δX Y entails δX ′Y for all X ′ that are subsets of X .

A determiner δ is RIGHT DOWNWARD MONOTONE iff δX Y en-
tails δX Y ′ for any Y ′ that is a subset of Y . Let us consider whether
every is right downward monotone. Suppose that every X Y is
true. Then X is a subset of Y . Now we will take a subset of Y ,
Y ′. Are we guaranteed that X is a subset of Y ′? No! Here is a
counterexample:
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lo

ud snorers musicians

snorers

Here, X (musicians) is not a subset of Y ′ (loud snorers). Or think
about it this way: From every musician snores it doesn’t follow
that every musician snores loudly. So every is not right downward
monotone.

Now let us consider some. With some, we are not guaranteed
that a true sentence will remain true when we replace X with a
subset X ′. Some X Y is true iff the intersection of X and Y con-
tains at least one member. If we take a subset X ′ of X , then we
might end up with a set that has no members in common with Y ,
like this:

musicians snorers

cellists

So, for example, suppose that Some musician snores is true.
From this it does not follow that Some cellist snores is true, be-
cause it could be the case that none of the musicians who snore
are cellists. So some is not left downward monotone. By analogous
reasoning, it isn’t right downward monotone either.
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Exercise 8. Is no left downward monotone? Is it right downward
monotone? Explain. In a sentence of the form No X Y , where
are negative polarity items licensed (see above)? So, does the
Fauconnier-Ladusaw generalization hold up for no? Explain.

Exercise 9. Consider the following data:

(21) At most five [ of the cities I have ever visited ] [ have decent
bike infrastructure ].

(22) At most five [ of the cities I have visited ] [ have any decent
bike infrastructure at all ].

(23) *At least five [ of the cities I have ever visited ] [ have de-
cent bike infrastructure ].

(24) *At least five [ of the cities I have visited ] [ have any decent
bike infrastructure at all ].

This shows that at most five licenses NPIs in the NP it forms a
syntactic unit with as well as the VP, and at least five licenses neg-
ative polarity items in neither position. Let us consider whether
the distribution of negative polarity items with these quantifiers
fits the Fauconnier-Ladusaw generalization about downward
entailment (that NPIs are licensed in downward-entailing envi-
ronments).

In particular, consider whether at most five and at least five
produce downward-entailing environments both in NP, and in
the VP. You’ll need to construct four pairs of examples, one pair
for each of the environments under consideration.

Note: Your examples should not contain NPIs; your goal is just to
determine whether the environment is downward-entailing.
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Based on your observations, does the Fauconnier-Ladusaw
generalization hold up for at least and at most? Explain your
reasoning for your answer.

Exercise 10. For each of the examples in (2), (3), and (4b) on page
48, check whether the Fauconnier-Ladusaw generalization holds
up. Are downward entailments licensed in exactly the places
where NPIs are licensed? (The examples that you need to con-
struct in order to test this should not contain NPIs; they can be
examples like the ones in (18b), (20b) and (19b).)

What we have seen so far is that the Fauconnier-Ladusaw gen-
eralization works quite well as a way of characterizing the envi-
ronments where negative polarity items are licenced. But it is not
perfect. For example, consider the fact that only licenses negative
polarity items in the VP in sentences like the following:

(25) Only Sandy did any work.

The verb phrase is not a downward-entailing environment, as shown
by the fact that (26a) does not entail (26b).

(26) a. Only Sandy did work.
b. Only Sandy did gardening.

Suppose that the only kind of work that was done was food prepa-
ration and clean-up; nobody did any gardening. Then (26a) could
be true even though (26b) is not true; Sandy didn’t garden. This
particular issue can be resolved by replacing ‘downward entail-
ment’ with what von Fintel (1999) calls STRAWSON DOWNWARD-
ENTAILMENT. An environment is Strawson downward-entailing if
it is downward-entailing under the assumption that all of the pre-
suppositions of both sentences are true. For instance, (26b) presup-
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poses that Sandy did gardening, and (26a) presupposes that Sandy
did work. Under these assumptions, (26a) does entail (26b), so the
verb phrase is a Strawson downward-entailing environment.

Another type of example that is challenging for the Fauconnier-
Ladusaw generalization is questions, like:

(27) Did you have any problems?

It is not entirely clear what it means for one question to entail an-
other. On the basis of this and other data, some authors, including
Zwarts (1995) and Giannakidou (1999), have offered a theory of
negative polarity item licensing based on a notion called ‘veridi-
cality’, which we will not go into here. For further reading on neg-
ative polarity items, we recommend the overview by Penka (2016)
as a place to start.

2.5 Relations and functions

The denotations of common nouns like cellist and intransitive verbs
like snores are often thought of as sets (the set of cellists, the set of
individuals who snore, etc.). Transitive verbs like love, admire, and
respect are sometimes thought of as denoting RELATIONS between
two individuals. Relations can be modelled mathematically using
pairs of elements that stand in a specified order to each other, i.e.
ORDERED PAIRS.

2.5.1 Ordered pairs

As stated above (p. 55), sets are not ordered. For any a and b:

{a,b} = {b, a}

But the elements of an ORDERED PAIR are ordered. Using angle
brackets, we write

⟨a,b⟩
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to designate the ordered pair in which a is the FIRST MEMBER and
b is the SECOND MEMBER. Thus:

⟨a,b⟩ ≠ ⟨b, a⟩

Like the elements of sets, the members of an ordered pair can
be anything. Here is an ordered pair of numbers:

⟨3,4⟩

A member of an ordered pair could also be a set, as in the or-
dered pair whose first member is the set {1,2,3} and whose sec-
ond member is the set {2,3,4}, written:

⟨{1,2,3},{2,3,4}⟩

Alternatively, one or both of the members could be ordered pairs,
as in the following:

⟨3,⟨10,12⟩⟩

In this ordered pair, the first member is the number 3, and the sec-
ond member is the ordered pair ⟨10,12⟩. Note that ⟨3,{10,12}⟩
is not the same thing as ⟨3,⟨10,12⟩⟩. The first is an ordered pair
whose second member is the set containing 10 and 12; the sec-
ond is an ordered pair whose second member is the ordered pair
⟨10,12⟩.

Given two sets A and B , the set of ordered pairs ⟨x, y⟩ such
that x ∈ A and y ∈ B is called the CARTESIAN PRODUCT of A and B ,
written A×B . For example:

{a,b,c}×{1,2,3}

= {⟨a,1⟩,⟨a,2⟩,⟨a,3⟩,⟨b,1⟩,⟨b,2⟩,⟨b,3⟩,⟨c,1⟩,⟨c,2⟩,⟨c,3⟩}

Exercise 11. True or false?
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(a) {3,3} = {3}

(b) {3,4} = {4,3}

(c) ⟨3,4⟩ = ⟨4,3⟩

(d) ⟨3,3⟩ = ⟨3,3⟩

(e) {⟨3,3⟩} = ⟨3,3⟩

(f) {⟨3,3⟩,⟨3,4⟩} = {⟨3,4⟩,⟨3,3⟩}

(g) ⟨3,{3,4}⟩ = ⟨3,{4,3}⟩

(h) {3,{3,4}} = {3,{4,3}}

2.5.2 Relations

As mentioned above, the semantics of transitive verbs like love,
admire, and respect is sometimes modeled using RELATIONS be-
tween two individuals. The ‘love’ relation corresponds to the set
of ordered pairs of individuals such that the first member loves the
second member. Suppose John loves Sandy. Then the pair ⟨John,
Sandy⟩ is a member of this relation.

Certain nouns, including neighbor, mother, and friend, can
be thought of as denoting relations between individuals. So can
prepositions like in and beside. Relations can also hold between
sets; for example, subset is a relation between two sets A and B
which holds if and only if every element of A is an element of B .
As mentioned before, this is arguably the relation expressed by the
determiner every; if every A is a B , then A is a subset of B .

A preposition like in denotes a relation between two individ-
uals; that is, it denotes a BINARY RELATION. The preposition be-
tween, by contrast, expresses a TERNARY RELATION, that is, a re-
lation between three objects (a is between b and c). A ternary

Draft January 18, 2024



76 Sets, relations, and functions

relation can be modelled as a set of ordered triples. For exam-
ple, the ternary relation denoted by between contains the follow-
ing triples:

⟨Alabama,Mississippi,Georgia⟩

⟨Togo,Ghana,Benin⟩

as Alabama is between Mississippi and Georgia and Togo is be-
tween Ghana and Benin. A QUATERNARY relation corresponds to
a set of ordered 4-tuples. For example, it might be convenient
for some purposes to consider a ‘spatiotemporal location’ relation
that holds between an entity, a latitude, a longitude, and a time.

Given sets A and B , a RELATION FROM A TO B is a set of ordered
pairs whose first member is an element of A and whose second
member is an element of B . Not all elements of A and B need
necessarily be involved in the relation. The DOMAIN is the set of
those entities in A that occur as a first member of some pair, and
the RANGE is the set of those entities in B that occur as a second
member of some pair. The union of the domain of a relation with
its range is called the FIELD of a relation. The sets A and B them-
selves are called the DOMAIN OF DEFINITION and the CODOMAIN of
the relation. Formally, a binary relation over A and B is a (proper
or non-proper) subset of the Cartesian product A×B .

The sets A and B can be, but need not be distinct. One can
also be a subset of the other. A REFLEXIVE relation is one that re-
lates everything to itself, that is, for any x, the pair ⟨x, x⟩ is in the
relation. (Other pairs may be in the relation, too.) For example,
the relation ‘greater than or equal to’ is reflexive, because every
number is greater than or equal to itself.

A relation is SYMMETRIC if and only if: For any a and b, if ⟨a,b⟩
is in the relation, then ⟨b, a⟩ is also in the relation. For example,
the ‘standing next to’ relation is symmetric; hence the following
argument is valid:

(28) Paul is standing next to George.
∴George is standing next to Paul.
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The ‘admires’ relation is not, though.

(29) Paul admires George.
/∴George admires Paul.

Here we see an example of how mathematical properties of the
relations expressed by words and phrases in natural language can
affect the inference patterns that they license.

A TRANSITIVE relation is one that licenses inferences like this:

(30) Paul is taller than George.
George is taller than Ringo.

∴ Paul is taller than Ringo.

In general, a relation is TRANSITIVE if and only if: For any a, b, and
c, if ⟨a,b⟩ and ⟨b,c⟩ are in the relation, then ⟨a,c⟩ is also in the
relation. (This notion TRANSITIVE should not be confused with
the notion of a transitive verb.) Another example of a transitive
relation is ‘before’: If a is before b, and b is before c, then a is
before c.

A relation that is reflexive, symmetric, and transitive is called
an EQUIVALENCE RELATION. For example, the relation ‘has the
same birthday as’ is an equivalence relation. An equivalence re-
lation determines a PARTITION over a set, that is, a set of non-
intersecting subsets that cover the whole set (so the union of the
subsets is equal to the whole set). Each member of the partition is
called a CELL of the partition. So, for example, if we group people
by birthday, we can form a partition over the set of people with a
number of cells equal to the number of different birthdays. Within
each cell, the elements will stand in the ‘have the same birthday’
equivalence relation to each other, and it is in that sense that the
equivalance relation determines the partition. This notion comes
up in the analysis of questions, although we will not touch on that
in this book.
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Exercise 12. One of the following arguments is valid, and the other
is not.

(31) The singer is the drummer’s brother.
∴ The drummer is the singer’s brother.

(32) The singer is the drummer’s sibling.
∴ The drummer is the singer’s sibling.

Which one is valid? Why is it valid while the other is not? Put
your answer in the following form: “Because expresses a

relation and does not.”

Exercise 13. One of the following arguments is valid, and the other
is not.

(33) The singer is immediately to the left of the drummer.
The drummer is immediately to the left of the lead gui-
tarist.
Therefore, the singer is immediately to the left of the lead
guitarist.

(34) The singer is to the left of the drummer.
The drummer is to the left of the lead guitarist.
Therefore, the singer is to the left of the lead guitarist.

Which one is valid? Why is it valid while the other is not? Put
your answer in the following form: “Because expresses a

relation and does not.”

Exercise 14. ABBA is composed of two couples: Björn and Ag-
netha, and Frida and Benny. The ‘partner’ relation over the mem-
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bers of ABBA can be expressed as the following set of pairs:

{⟨Agnetha,Björn⟩,⟨Björn,Agnetha⟩,⟨Frida,Benny⟩,⟨Benny,Frida⟩}

(a) Is the ‘partner’ relation symmetric? Explain why or why not.

(b) Is the ‘partner’ relation transitive? Explain why or why not.

2.5.3 Functions

We turn now to functions, a special type of relation. The word
‘function’ has many senses, but here we are using it in its mathe-
matical sense. You can think of a mathematical function as some-
thing like a vending machine: It takes an INPUT (e.g. a specifica-
tion of which item you would like to buy), and returns an OUT-
PUT (e.g. a particular bag of chocolate-covered raisins). (Let us set
aside the fact that vending machines typically also require money;
this constitutes an additional input.) The inputs to functions are
also called ARGUMENTS (this is unrelated to the notion of an argu-
ment as constituted by a series of statements that we encountered
in Chapter 1). The outputs of functions are also called VALUES.

An example of a function is a relation that maps a person to
their height in feet and inches. For example, given Michelle Obama
(the person herself) it returns 5′11′′ (five feet and 11 inches). Be-
cause functions are relations, a function is essentially a set of or-
dered pairs. The following ordered pairs are members of this ‘height’
function:

⟨Michelle Obama,5′11′′⟩

⟨Angela Merkel,5′5′′⟩

⟨Jacinda Ardern,5′5′′⟩
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Every function is a relation (by definition), but not every relation
is a function. A relation from A to B is a FUNCTION only if every
element of A is mapped to one and only one member of B . In
the example at hand, we have a relation from people to heights.
Two different people may be mapped to the same height, but for
every person, there is only one height that it maps to. For exam-
ple, both Angela Merkel and Jacinda Ardern (the political leaders
of Germany and New Zealand, respectively, at the time of writing)
are mapped to 5′5′′ by this ‘height’ function, but the only value
that Angela Merkel is mapped to is 5′5′′. An example of a rela-
tion that is not a function is the ‘sister’ relation, because a single
person may have multiple sisters. In Figure 2.1, the relations de-
picted are not functions. In Figure 2.2, the relations depicted are
functions.

domain

codomain

domain

codomain

Figure 2.1: Two non-functions

Functions can be written either as a set of ordered pairs:

{⟨M. Obama,5′11′′⟩,⟨Angela Merkel,5′5′′⟩,⟨Jacinda Ardern,5′5′′⟩, ...}
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domain

codomain

domain

codomain

Figure 2.2: Two functions

or using large brackets like this:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Michelle Obama → 5′11′′

Angela Merkel → 5′5′′

Jacinda Ardern → 5′5′′

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The style with large brackets is easier to read (though not as easy
to type), so we will often use that style.

We write f (a) for ‘the result of applying function f to argu-
ment a’ or ‘ f of a’ or ‘ f applied to a’. In this PARENTHESIS NO-
TATION, the argument is enclosed within parentheses. Note that
there are no spaces surrounding the parentheses. If f is a func-
tion that contains the ordered pair ⟨a,b⟩, then:

f (a) = b

This means that given a as input, f gives b as output. More prop-
erly speaking, we say that a is given to f as an ARGUMENT, and that
b is the VALUE of the function f when a is given as an argument.
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Exercise 15. Some nouns in English express relations; these are
called relational nouns. A special class of relational nouns ex-
presses functions; these are sometimes called functional nouns.
For example, mother (in the biological sense) is a functional noun
(assuming that the relevant domain consists of people) because
every person has a unique mother. On the other hand, aunt is not,
because some people have multiple aunts or none at all. Which of
the following might be called functional nouns? When answering
this question, assume domains where the relations in question are
defined. For example, when deciding whether height is a function,
assume a domain that only contains objects that can have height
to begin with.

(a) height

(b) center

(c) edge

(d) part

(e) age

(f) citizenship

Given a set A, a function that takes an entity and returns 1
(True) if that entity is a member of A and 0 (False) otherwise is
called the CHARACTERISTIC FUNCTION of A. For example, the set of
ABBA band members is {Agnetha, Björn, Benny, Frida}. With this
set as the domain, the characteristic function of the set {Agnetha,
Frida} is a function that takes as input an ABBA member and re-
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turns 1 (True) if the input is a member of this set and 0 if not:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → 1
Björn → 0
Benny → 0
Frida → 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

This function, applied to Agnetha, yields 1 (True). Applied to Björn,
it yields 0 (False). (Conversely, if f is the characteristic function of
S, then S is the CHARACTERISTIC SET of f .)

The denotations (relative to a particular circumstance) of com-
mon nouns like tiger and picnic and student are sometimes treated
as sets – the set of tigers, the set of picnics, the set of students. But
characteristic functions provide an equivalent way of capturing
the same information. This fact will turn out to be convenient as
we develop our semantic theory in later chapters.

Exercise 16. Recall that ABBA is composed of two couples—Björn
and Agnetha, and Frida and Benny—and that the ‘partner’ rela-
tion over the members of ABBA can be expressed as the following
set of pairs:

{⟨Agnetha,Björn⟩,⟨Björn,Agnetha⟩,⟨Frida,Benny⟩,⟨Benny,Frida⟩}

(a) The ‘partner’ relation (on the set of ABBA members) is a func-
tion. If we call this partner function f , then we can use the
parentheses notation to designate the value of the function
when applied to an argument. For example, we can write
f (Agnetha) to designate the value of the ‘partner of’ function
when applied to Agnetha. What is the value of f (Agnetha)?

(b) True or false: f (Björn) = Frida

(c) True or false:
f ( f (Björn)) = f (Agnetha)
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Exercise 17. Recall that the characteristic function of a set is a
function that maps every member of that set to 1, and every non-
member (in some specified larger set) to 0. For example, the char-
acteristic function of the set of female individuals in ABBA is:

{⟨Agnetha,1⟩,⟨Björn,0⟩,⟨Benny,0⟩,⟨Frida,1⟩}

(a) Give the characteristic function of the set of male individuals
in ABBA.

(b) Call the function you defined in the previous question male.
What is the value of male(Björn)?

(c) Suppose that the verb phrase is male denotes this function
male. Suppose further that the name Björn denotes Björn
Ulvaeus of ABBA. Suppose that the denotation of a sentence
consisting of a noun phrase and a verb phrase is the result of
applying the function denoted by the verb phrase to the de-
notation of the noun phrase. What, then, is the denotation of
the sentence Björn is male? (Give the value of the function.)

(d) Under the same assumptions (plus the assumption that Ag-
netha denotes Agnetha Fältskog of ABBA), what is the denota-
tion of the sentence Agnetha is male?
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3.1 Introduction

In Chapter 1, we suggested that one of the things a good theory
of meaning should capture is when one sentence entails another.
For example, a good theory of meaning should correctly predict
that the following are valid arguments:

(1) If it rained last night, then the lawn is wet.
It rained last night.

∴ The lawn is wet.

(2) Every man is mortal.
Socrates is a man.

∴ Socrates is mortal.

(3) Aristotle taught Alexander the Great.
Alexander the Great was a king.

∴Aristotle taught a king.

We will start working in simplified settings. We will use ar-
tificial FORMAL LANGUAGES that are inspired by natural language
but are also carefully designed to avoid much of its complexity
and ambiguity. We will then design a semantics that systemati-
cally associates sentences in these formal languages with differ-
ent truth values corresponding to different interpretations of the
placeholders in these sentences. This will allow us to develop a
notion of entailment. A formal language that is equipped with a
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notion of entailment, and a way to determine when that notion
applies, is called a LOGIC. The first formal language we will con-
sider is PROPOSITIONAL LOGIC (also called SENTENTIAL LOGIC). In
propositional logic, placeholders stand for entire clauses or sen-
tences, so we can express arguments like (1) but not like (2) or (3).
In chapter 4, we will then introduce PREDICATE LOGIC (also called
QUANTIFIER LOGIC), in which these latter two arguments can be
expressed.

We will use logic to interpret natural language in a two-step
manner (INDIRECT INTERPRETATION). First, we translate natural
language into a logic, and then we interpret that logic, as explained
in Chapter 1. By associating sentences of natural language with
sentences of logic, and letting the entailment relation on sentences
of natural language be inherited from the corresponding logic, we
can provide a theory of entailment in natural language.

3.2 Propositional logic

Recall from the introduction that one of the main driving ques-
tions in the study of logic is: Under what conditions is an argu-
ment valid? For instance, the following argument (repeated here
from (1)) is clearly valid:

(4) If it rained last night, then the lawn is wet. (Premise 1)
It rained last night. (Premise 2)

∴ The lawn is wet. (Conclusion)

This argument has two premises and a conclusion. The conclu-
sion is a necessary consequence of the premises: As long as the
premises are both true, the conclusion must be true too. One
might disagree with the premises, but it does not matter whether
they are actually true. As long as they are both granted, the con-
clusion holds. Hence, the argument is valid.

The conclusion in (4) is also a logical consequence of the premises.
The argument is an instance of the argument form known as MODUS
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PONENS:

(5) If p, then q .
p.

∴ q .

Exercise 1. Using (4) as inspiration, give another argument using
Modus Ponens.

Now consider this superficially similar argument:

(6) If it rained last night, then the lawn is wet. (Premise 1)
The lawn is wet. (Premise 2)

/∴ It rained last night. (Conclusion)

One might be tempted to think that this argument is valid, but it
is not. The premises might be true while the conclusion is false.
It may well be true that the lawn gets wet whenever it rains, and
that the lawn is wet. But if something other than rain can cause
the lawn to become wet, perhaps a sprinkler, then the conclu-
sion might still be false. Because the conclusion is not entailed
by the premises taken together, the argument is not valid. This ar-
gument form, which is called AFFIRMING THE CONSEQUENT, is not
correct—it is a FALLACY (an argument form that is not valid):

(7) If p, then q .
q .

/∴ p.

(Terminological note: in a conditional sentence of the form ‘if p
then q’, p is called the ANTECEDENT and q is called the CONSE-
QUENT. The name of this fallacious argument form derives from
the fact that the consequent is affirmed as a premise, and is then
used to derive the antecedent of the conditional sentence.)
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Exercise 2. Give another fallacious argument using Affirming the
Consequent.

Propositional logic aims to capture the difference between cor-
rect argument forms and fallacies, focusing on ones that involve
placeholders standing for clauses and sentences. By translating
sentences into propositional logic, and building our notion of en-
tailment on that of propositional logic, we can get a step closer
towards developing a theory of entailment for natural language.

Exercise 3. For both of the following argument forms, say whether
it is valid or a fallacy.

1. Modus Tollens
If it rained last night, then the lawn is wet.
The lawn is not wet.
Therefore, it did not rain last night.

2. Denying the antecedent
If it rained last night, then the lawn is wet.
It didn’t rain last night.
Therefore, the lawn is not wet.

3.2.1 Formulas and propositional letters

Let us begin our introduction to propositional logic with the no-
tion of a PROPOSITIONAL LETTER (also called propositional vari-
able or sentential letter). A propositional letter is a symbol that
represents roughly the kind of thing that is expressed by a sim-
ple declarative clause or sentence that does not contain any of the
words and, or, not, if, then. For example, the propositional letter p
is a placeholder for clauses like“Boston is the capital of Nebraska”,
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or “red is a primary color”, or any other sentence of this nature that
is either true or false. In this chapter, we will adopt the following
inventory of propositional letters:

Syntactic Rule: Propositional letters
p, q , and r are propositional letters.

(A summary of definitions like this will be compiled in Section
3.3.2.)

Other choices would also be possible within the realm of what
is called ‘propositional logic’. In principle, any set of symbols can
be used as propositional letters. When more letters are needed, it
is customary to use primes as in p, p′, p′′, etc. Different choices
of letters will give rise to different PROPOSITIONAL LANGUAGES. We
will refer to the specific propositional language we are building up
as LProp.

Just like natural languages, propositional languages and other
logics consist of grammatical sentences. In the context of logic, it
is common to use the term WELL-FORMED rather than “grammat-
ical”. The counterpart in logic of a grammatical sentence is called
a FORMULA or WFF (for well-formed formula). Our mapping from
natural languages to representation languages will map natural
language sentences to logical formulas (or formulae, as the plu-
ral of formula is sometimes written) with the same denotations as
the sentences.

Now, what is the denotation of a formula? Frege suggested
that the denotation of a natural language sentence is a truth value:
True (T) or False (F).1 In order to know if a formula is true or false,
we need to know which of its propositional letters we should con-
sider true and which ones we should consider false. An INTERPRE-
TATION FUNCTION, sometimes just called INTERPRETATION, for a

1In Chapter 8, we will countenance a third truth value (Neither), but here we
stick to classical logic, which has just two.
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given propositional language is a function that maps each propo-
sitional letter of that language to a truth value. What are these
interpretations? There are different ways to think about them,
and we come back to this below. But what they have in common
is that an interpretation provides enough information to deter-
mine truth values for all the formulas in a formula of propositional
logic. Here is an example of an interpretation function for LProp.

⎡⎢⎢⎢⎢⎢⎣

p → T
q → T
r → F

⎤⎥⎥⎥⎥⎥⎦
This says that p is true, and that q is true, while r is false.

We will speak of formulas being true or false “under an inter-
pretation” (that is, given an interpretation function) or “with re-
spect to an interpretation”. In propositional logic, an interpreta-
tion relative to which a given formula is true coincides with what
is called a MODEL FOR that formula. (Later, when we get to pred-
icate logic, the notions of ‘model’ and ‘interpretation’ will come
apart; as we will see, a model will then be taken to specify both an
interpretation and certain additional information that is not yet
relevant now.)

Any propositional letter, taken by itself, is a formula. But just
as natural language expressions may be built up from smaller ex-
pressions, formulas in propositional logic may be also built up
from smaller formulas. To define and interpret formulas of arbi-
trary size, we will lay down SYNTACTIC RULES (also called rules of
formation) and SEMANTIC RULES. Syntactic rules specify how to
build formulas, and semantic rules specify how to interpret them,
that is, how to map them to T or F. The semantic rules will be
compositional, in the sense that they assign denotations to larger
formulas in ways that depend only on the denotations of the smaller
formulas (rather than on their shape or length, for example).

As we assign truth values to complex formulas in terms of smaller
ones, we will introduce a DENOTATION FUNCTION, which provides
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a denotation to every formula of the language, by extending a given
interpretation function which just assigns denotations to the propo-
sitional letters. The denotation function is written using double
square brackets (a.k.a. ‘semantic brackets’), and carries a super-
script in order to specify the interpretation function it is based on:

Notational convention
For any well-formed formula φ of propositional logic, let JφKI

stand for the denotation of φ with respect to interpretation func-
tion I .

Here, the Greek letter φ (“phi”) is a META-VARIABLE, a symbol
which stands for a formula of propositional logic. Typical meta-
variables for propositional logic include φ (sometimes written ϕ)
and ψ (“psi”).2 Meta-variables are not themselves part of LProp;
they are part of the META-LANGUAGE that we use to talk about
LProp and other logics. (Recall from Chapter 1 that we said that our
meta-language would be English with some mathematical jargon
mixed in; meta-variables are among that mathematical jargon.)

Recall the example interpretation function given above:

⎡⎢⎢⎢⎢⎢⎣

p → T
q → T
r → F

⎤⎥⎥⎥⎥⎥⎦

Call this I1. Then, for example, JpKI1 (‘the denotation of p un-
der I1’) is T. Thus, interpretation functions and denotation func-
tions both map formulas to their truth values. The difference is
that interpretation functions only apply to propositional letters,
while denotation functions apply to all formulas of our proposi-
tional language. The interpretation function I will typically differ

2The Greek letter phi, writtenφ, looks very similar to the empty set symbol∅,
but this is just an accident; they are completely unrelated symbols.
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from one propositional language to the other, while the denota-
tion function J⋅KI extends I in a completely predictable way. Dif-
ferent propositional languages could have different propositional
letters or could use the same letter for different purposes, in which
case their interpretations I will have to differ. But once I is fixed,
J⋅KI is fixed too: the denotations of larger formulas are derived en-
tirely from those of the propositional letters they contain. (The
difference between I and J⋅KI in logic is like the difference between
lexicon and compositional semantics in English. If the meaning of
a given English word were to change, the lexicon of English would
change to reflect that fact, but the compositional semantics of En-
glish would stay the same.)

The following semantic rule specifies that in the case of propo-
sitional letters, I and J⋅KI coincide, for any interpretation function
I :

Semantic Rule: Propositional letters
If φ is any propositional letter and I is any function from proposi-
tion letters to truth values, then

JφKI = I(φ)

So, for example, JpKI = I(p). If I(p) =T, then JpKI =T as well.

Exercise 4. Let I1 be defined as above. What is the value of I1(r)?
What is the value of Jr KI1 ?

3.2.2 Boolean connectives

Formulas in propositional logic can be combined and assembled
into larger formulas by using the so-called LOGICAL CONNECTIVES,
or just CONNECTIVES. These connectives correspond roughly to
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the English expressions and, or, not, if . . . then, and if and only
if (often abbreviated iff ). The meanings of these expressions are
intimately connected with each other. To illustrate: Suppose you
ask your friend, “Are you free today or tomorrow?” and she says no.
That means that she’s not free today, and she’s not free tomorrow.
In general, the following argument form is valid:

(8) not [p or q]
∴ [not p] and [not q]

as is its converse,

(9) [not p] and [not q]
∴ not [p or q]

Because the argument is valid in both directions,

[not p] and [not q]

and

not [p or q]

are EQUIVALENT, a relationship we can express using ‘if and only
if’:

(10) [[not p] and [not q]] if and only if [not [p or q]]

Now, suppose you ask your friend, “Are you free today and tomor-
row?” and she says no. That is not quite as strong; it means that ei-
ther she’s not free today or she’s not free tomorrow (or both). Thus
the following argument form is valid:

(11) not [p and q]
∴ [not p] or [not q]

Its converse is valid as well:

(12) [not p] or [not q]
∴ not [p and q]
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Again, we have an equivalence:

(13) [[not p] or [not q]] if and only if [not [p and q]]

The equivalences in (10) and (13) are called DE MORGAN’S LAWS.
We elaborate on them a few pages down.

By specifying a syntax and an interpretation for connectives
corresponding to and, or, and not, we can capture the logical re-
lationships between these words.

The term CONNECTIVE is used in logic for symbols that con-
nect formulas, or attach to them, to form new formulas. A propo-
sitional letter standing alone is called an ATOMIC FORMULA, while
formulas that are formed with the help of connectives are called
COMPLEX FORMULAS. Two examples of connectives in proposi-
tional logic are the symbol ∧ (sometimes written &), pronounced
‘and’, and the symbol ∨ (sometimes written ∣ ), pronounced ‘or’.
Symbols such as conjunction and disjunction are called BINARY

CONNECTIVES, because they join two formulas together. The nega-
tion symbol ¬ (sometimes written ∼) is called a UNARY CONNEC-
TIVE, because it applies to a single formula to produce a new one.
Connectives, particularly unary ones, are also called OPERATORS.

Consider the sentence Susan does not volunteer on Monday.
This can be represented in propositional logic as follows. Let the
propositional letter p represent the sentence Susan volunteers on
Monday. We then represent Susan does not volunteer on Monday
as follows:

¬p

This is a formula and can be read ‘it is not the case that p’, or
simply, ‘not p’. The ¬ symbol represents ‘it is not the case that’. In
general:

Syntactic rule: Negation
If φ is a formula, then ¬φ is also a formula. (This is called the
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NEGATION of φ.)

Now, this ¬ symbol is interpreted in such a way that ¬p is true
whenever p is false, and vice versa. There are two possibilities
to consider: p is true; p is false. The interpretation of ¬ can be
represented using a TRUTH TABLE, as follows. A truth table is a
way of representing interpretation functions and showing how the
denotation function extends them to complex formulas. Each row
in a truth table corresponds to a different interpretation function.

p ¬p

T F

F T

This says: If p is true, then ¬p is false; and if p is false, then ¬p is
true.

We will express the information contained in this truth table
in a different format as our official semantic rule:

Semantic Rule: Negation
If φ is a formula, then J¬φKI =T if JφKI = F, and F otherwise.

The expression “andF otherwise” is a common shorthand that
we will frequently use to indicate whatever is the relevant other
possibility; here, for example, it stands for “and J¬φKI = F if JφKI =
T”.

Let us now consider the binary connectives, corresponding to
and and or. An expression of the form ‘X and Y’ is called a CON-
JUNCTION; an expression of the form ‘X or Y’ is called a DISJUNC-
TION. In English, conjunctions can join two noun phrases, as in
Susan volunteers on Monday and Wednesday, where Monday and
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Wednesday are two noun phrases joined by and. But in this exam-
ple, what is actually expressed can also be expressed as the con-
junction of two sentences, which we can represent using the let-
ters p and q . Let the propositional letter p represent the sentence
Susan volunteers on Monday as above, and let the propositional
letter q represent the sentence Susan volunteers on Wednesday.
We can then represent Susan volunteers on Monday and Wednes-
day in propositional logic as follows:

[p ∧q]

This is a formula and can be read ‘p and q’. It is a CONJUNC-
TION in which p and q are the two CONJUNCTS. In general:

Syntactic rule: Conjunction
If φ and ψ are formulas, then [φ∧ψ] is also a formula.

This truth table for ∧ is as follows:

p q [p ∧q]

T T T

T F F

F T F

F F F

The semantic rule expresses the same information as the truth ta-
ble in more compact form:

Semantic Rule: Conjunction
If φ and ψ are formulas, then J[φ∧ψ]KI =T if JφKI =T and JψKI =
T, and F otherwise.
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The DISJUNCTION of φ and ψ is written [φ∨ψ]. In such a for-
mula, φ and ψ are called DISJUNCTS. For example:

[p ∨q]

can be read ‘p or q’. In general:

Syntactic rule: Disjunction
If φ is a formula andψ is a formula, then [φ∨ψ] is also a formula.

The interpretation of ∨ can be represented as follows.

p q [p ∨q]

T T T

T F T

F T T

F F F

Semantic Rule: Disjunction
If φ andψ are formulas, then J[φ∨ψ]KI =T if JφKI =T or JψKI =T
(or both), and F otherwise.

This interprets∨ as INCLUSIVE DISJUNCTION, because the state-
ment is considered true even in the case where both of the dis-
juncts are true. This might surprise you. Suppose you heard this
sentence:

(14) Susan volunteers on Monday or Wednesday.

Would you conclude that Susan volunteers on Monday or Wednes-
day, but not both? If so, then you are getting a so-called EXCLUSIVE

interpretation, where the possibility that she volunteers on both
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days is excluded. An INCLUSIVE interpretation is one on which the
sentence is still true if she volunteers on both days.

EXCLUSIVE DISJUNCTION specifies that only one of the disjuncts
is true. While it is not generally considered part of propositional
logic, it would not be difficult to define an exclusive disjunction
connective, sometimes written XOR (for eXclusive OR).

Exercise 5. Specify appropriate syntactic and semantic rules and
an appropriate truth table for the exclusive disjunction connec-
tive XOR.

One might imagine that natural language or is ambiguous be-
tween inclusive and exclusive disjunction. But there is reason to
believe that inclusive reading is what or really denotes, and that
the exclusive reading arises via a conversational implicature. One
argument for this comes from the fact that negation reliably brings
out the inclusive disjunction (e.g. Horn, 1985; Schwarz et al., 2008).
If I say Kim did not invite Pat or Sandy, it follows that Kim did not
invite Pat and also did not invite Sandy. As for unembedded dis-
junctions, experiments have consistently shown that most of the
time they are considered true, not false, when both disjuncts are
true (e.g. Paris, 1973).

So far, we have discussed the semantics of ∧, ∨, and ¬. In each
case, the truth value of a complex expression that is produced by
combining one of these connectives with the appropriate number
of formulas depends solely on the truth values of the connectives.
Connectives with this property are called TRUTH-FUNCTIONAL. In
Chapters 12 and 13, we will encounter connectives that are not
truth-functional.

Truth tables can be used to compute the truth values for ar-
bitrarily complex formulas using these connectives. For instance,
let us consider when the formula ¬[p ∧q] is true. To find out, we
first find out when [p ∧q] is true, and then apply negation to that.
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p q [p ∧q] ¬[p ∧q]

T T T F

T F F T

F T F T

F F F T

(The brackets [ ] are crucial here, as they show that we are apply-
ing negation to the conjunction of p and q . As we will see later,
the syntax rules for propositional logic will ensure that a formula
like [¬p ∧ q] would be interpreted as the conjunction of ¬p and
q .) The final column in the truth table above, for ¬[p ∧q], is the
result of ‘flipping’ the truth values in the preceding column, for
[p ∧q]. This is what the truth table for negation tells us to do.

Recall that a sentence A entails a sentence B whenever in ev-
ery case where A true, B is true as well. Similarly, when A and B
have the same truth values in every case, we say they are EQUIV-
ALENT. When our sentences are formulas of propositional logic,
and our cases are interpretations, entailment and equivalence can
be easily checked with truth tables, where every row corresponds
to an interpretation. To do so, construct a truth table with columns
for both formulas, and observe how the two columns relate. For
example, to prove that p is equivalent to ¬¬p, we can use the
following truth table, where the columns for the two formulas in
question are highlighted:

p ¬p ¬¬p

T F T

F T F

Since this formula only has one propositional letter, we only need
to consider two cases, each corresponding to a row of the truth
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table. The case where it’s true corresponds to the first row, and
the case where it’s false corresponds to the second row. Observe
that in the case where p is true, ¬¬p is also true, and in the case
where p is false, ¬¬p is also false.

De Morgan’s laws involve two propositional letters, so there
are four cases to consider, as each propositional letter might be
either true or false in a given interpretation. For instance, to prove
that ¬[p ∧q] is equivalent to [¬p ∨¬q], let us use the following
truth table, where the columns for¬[p ∧q] and [¬p ∨¬q] are high-
lighted. (The non-highlighted columns are there as intermedi-
ate steps that will allow you to compute the highlighted columns,
which are the main ones of interest.) As you can see, the pattern
of T and F values in the two columns is the same.

p q [p ∧q] ¬[p ∧q] ¬p ¬q [¬p ∨¬q]

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

The two formulas are thus true under all the same interpretations,
and false under all the same interpretations, and this shows that
they are logically equivalent.

Exercise 6. Show that ¬[p ∨q] is equivalent to [¬p ∧¬q], using a
truth table. This is one of De Morgan’s Laws. Here is a start:

p q

T T

T F

F T

F F
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What should we observe about your truth table? In other words,
what shows that the two formulas are equivalent?

Entailment can also be proven using truth tables. Recall the
definition of entailment: A entails B if and only if there is no cir-
cumstance in which A is true but B is not. Truth tables list out vari-
ous alternative possible scenarios, and each row of the truth table
corresponds to a different imaginable circumstance. Example:

[p ∧q]

entails
p

because there is no row where [p ∧q] is true but p is not.

p q [p ∧q]

T T T

T F F

F T F

F F F

Exercise 7. Does p entail [p ∧q]? Explain why or why not, using
the truth table.

Exercise 8. Decide whether or not:

¬[p ∨q]
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entails
¬[p ∧q]

Start by filling in this truth table:

p q [p ∨q] ¬[p ∨q] [p ∧q] ¬[p ∧q]

T T

T F

F T

F F

Based on the truth table you constructed, does ¬[p ∨q] entail
¬[p ∧q]? Explain.

Let us take a moment to reflect on the exact type of entailment
that we have captured using these formal tools. Recall from Chap-
ter 1 that we sketched two ways of viewing entailment, the first in
terms of logical consequence and the second in terms of neces-
sary consequence. To recap, the logical consequence view says
that an argument is valid just in case there is no way to interpret
its placeholders that results in an argument with a true premise
and false conclusion. And the necessary consequence view says
a valid argument is one for which there is no possible circum-
stance under which the premises are true but the conclusion false.
Which of these have we implemented here?

The answer depends on what interpretations are. Can we see
interpretations as corresponding to specific possible worlds, or
‘ways things could have been’? If so, we can think of the entail-
ment relation of our logic as necessary consequence. Can we see
interpretations as corresponding to specific ways to fill in the place-
holders in an argument form? If so, we can think of our entailment
relation as logical consequence. Because a model assigns truth
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values to different propositional letters independently of one an-
other, the two perspectives are equivalent only as long as one as-
sumes that the intrinsic meanings of propositional letters are in-
dependent of one another. In propositional logic, this assump-
tion is always made. By contrast, if we were to take the letters
p and q in a given language to stand for propositions that aren’t
both true in any possible world, this assumption would be vio-
lated. Suppose for example that we took p and q to stand for pairs
of propositions such as “today is Tuesday” and “tomorrow is Tues-
day”; or “this is red” and “this is colorless”; or “there is water in
my cup” and “there is no H2O in my cup”; or “John has grandchil-
dren” and “John is childless”. In all these cases, it seems that an
interpretation function that maps both p and q to T does not cor-
respond to any possible world. Now, the way we have set things
up, the truth tables always list out all combinations of truth val-
ues for proposition letters like p and q . Each row corresponds
to an ‘interpretation’ of the proposition letters, and to check en-
tailment, we consider all of these interpretations, even if they are
intuitively ‘impossible’ in some sense. Hence the notion of con-
sequence that we have implemented here is logical consequence,
rather than necessary consequence. In Chapter 13, we will bring
necessary consequence back into the picture.

Truth tables can also help to shed light on SCOPAL AMBIGUITY.
The following sentence is scopally ambiguous:

(15) Geordi didn’t consult both Troi and Worf.

It can mean either of the following:

(16) a. Geordi consulted neither Troi nor Worf.
b. It is not the case that Geordi consulted both Troi and

Worf (although he might have consulted one or the
other).

The two readings can be modeled based on the relative scope of
negation and conjunction. Assume that the propositional letter
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p stands for the English sentence Geordi consulted Troi, and the
propositional letter r stands for the sentence Geordi consulted Worf.3

The two readings can then be represented as:

(17) a. ¬[p ∧ r ]
b. [¬p ∧¬r ]

These two formulas are not equivalent. However, the second for-
mula is equivalent to ¬[p ∨ r ], which explains why ‘Geordi didn’t
consult Troi and Worf’ can mean the same thing as ‘Geordi didn’t
consult Troi or Worf’!

Exercise 9.

(a) Which of the formulae in (17) captures the reading in (16a)?

(b) Which corresponds to the reading in (16b)?

You might have noticed that we always place square brack-
ets around conjunctions and disjunctions. In general, the outer
square brackets that go with binary connectives are always there
according to the official rules of the syntax. We will sometimes
drop them when they are not necessary for disambiguation. Some-
times, operator precedence rules are assumed. For example, in
the absence of brackets, negation is taken to TAKE SCOPE UNDER

(i.e. bind more strongly than) the binary connectives. (The SCOPE

of a connective in a formula is the part of the formula that stands

3We can do this without causing too much confusion here because Geordi
consulted Troi and Geordi consulted Worf are logically independent of each
other; they could both be true, they could both be false, or one or the other of
them could be the only true one. If we were dealing with two sentences that
were not independent in this way (e.g., if one entailed the other or they were
mutually contradictory), then this type of ‘translation’ would lead us to consider
impossible combinations of truth values for the sentences.
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in for the metavariable(s) in its syntactic rule.) This means that
a formula like ¬p ∧ r is the conjunction of ¬p with r , and is not
equivalent to ¬[p ∧ r ]. Likewise, the material conditional and the
biconditional, which we are about to encounter, are sometimes
taken to TAKE SCOPE OVER all other connectives. Brackets can be
left in place to either override or reinforce these conventions. Con-
junctions and disjunctions bind equally strongly, and one must
take care to leave brackets in place. For example, [[p ∧q]∨ r ] is
not equivalent to [p ∧ [q ∨ r ]]. Here the brackets disambiguate:
one should never write something like [p ∧q ∨ r ]

Exercise 10. Above, we suggested that the inclusive reading is
what or really denotes, and that the exclusive reading arises via
a conversational implicature in certain contexts. One argument
came from the fact that if one says Kim did not invite Pat or Sandy,
it follows that Kim did not invite Pat and also did not invite Sandy.

Spell out this argument. To this end, write out truth tables for
¬[p ∨q] and ¬[p XOR q] (for the definition of XOR as exclusive
or, see above). Where do they differ? Which analysis captures the
intuition that Kim did not invite Pat or Sandy entails that Kim did
not invite Pat and also did not invite Sandy? Explain. You may
assume that conversational implicatures of the kind that would
be involved here (‘scalar implicatures’) typically disappear under
negation.

3.2.3 Conditionals and biconditionals

Recall that we want our logic to validate Modus Ponens (‘If p then
q ; p; therefore q’) as an argument form, but not Affirming the
Consequent (‘If p then q ; q ; therefore p’). In other words, we want
to account for the fact that one is valid but not the other. There is a
way of defining the semantics of CONDITIONAL statements (state-
ments of the form ‘if A then B’) using truth tables that captures
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these facts. This method involves the so-called MATERIAL CONDI-
TIONAL, a connective written as→ (sometimes also ⊃).

The material conditional is the truth-functional connective that
comes closest to conditional statements (ones of the form ‘if p
then q’) in natural language. Consider the following conditional
sentence:

(18) If it’s sunny, then it’s warm.

(As a reminder, in a conditional sentence of the form ‘if p then
q ’, p is called the ANTECEDENT and q is called the CONSEQUENT.
Here the antecedent is it’s sunny and the consequent is it’s warm.)
There are four types of situations, in principle:

1. It’s sunny and it’s warm.

2. It’s sunny and it’s not warm.

3. It’s not sunny and it’s warm.

4. It’s not sunny and it’s not warm.

Let us consider which of these situations would falsify (18). Cer-
tainly the first situation does not. And if it’s not sunny, then whether
it’s warm is irrelevant, because the claim only pertains to situa-
tions where it’s sunny. So the third and the fourth situations would
not falsify it. Since classical propositional logic has only two truth
values, and we cannot plausibly assign F in these cases, we assign
T instead. The only kind of situation that could falsify the claim is
the second one, where the antecedent is true and the consequent
is false.

In general, a formula of the form [p→ q] is false only when p
is true and q is false, and true otherwise. The truth table for this
connective looks like this:
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p q [p→ q]

T T T

T F F

F T T

F F T

While it seems intuitively clear that a conditional is false when the
antecedent is true and the consequent is false, it admittedly seems
less intuitively clear that a conditional is true when the antecedent
is false. For example, the moon is not made of green cheese. Does
that mean that If the moon is made of green cheese, then I had yo-
gurt for breakfast this morning is true? Intuitively not.

One might think that an indicative conditional is true only if
the corresponding argument is valid. As we have seen there, an
argument is not made valid merely by virtue of having a true con-
clusion; its validity depends on whether the conclusion is true
in all cases where the premise is true. So one might reasonably
argue that English indicative conditionals too cannot be judged
as true or false based on a single case. In order to capture the
truth conditions of indicative conditionals, we would need to talk
about multiple circumstances or interpretations and not just a
single one.4 But the connectives of propositional logic are TRUTH-
FUNCTIONAL: their truth value depends only on the truth values of
their constituents. Among truth-functional connectives, the ma-
terial conditional as we have defined it comes closest to doing the
job. With it, we can account for the fact that Modus Ponens is valid
and Denying the Antecedent is invalid.

Exercise 11. Fun fact: [p→ q] is equivalent to [¬p ∨q]. Show this
by filling in the following truth table.

4See Bennett (2003) and von Fintel (2011) for good introductions to the topic.
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p q [p→ q] ¬p [¬p ∨q]

T T

T F

F T

F F

What should we observe about this truth table? In other words,
what shows that the two formulas are equivalent?

Exercise 12. Let us consider the question of whether Modus Tol-
lens ([p→ q]; ¬q ; therefore ¬p) turns out to be a valid argument
form. Start by filling in this truth table:

p q [p→ q] ¬q ¬p

T T

T F

F T

F F

To determine whether the argument is predicted to be valid,
we need to determine whether the conclusion of the argument
is true in every case where all of the premises are true. So first,
we need to determine in what cases all of the premises are true.
There are two premises in the Modus Tollens argument: [p→ q]
and ¬q . The first step is to identify the row(s) in which both of
these premises are true. The next step is to consider whether the
conclusion of the argument (¬p) is true in every such row.
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With all this in mind, explain in your own words how we can
see from the truth table above that Modus Tollens is valid.

Exercise 13. Recall that Denying the Antecedent has the form:

Premise 1: [p→ q]
Premise 2: ¬p
Conclusion: ¬q

Using a truth table, explain in your own words why the argument
is or is not valid, sticking closely to the truth table. (Which are the
rows where all of the premises are true? Is the conclusion true in
those rows?)

As we have seen at the outset of this chapter, not all true con-
ditionals have true converses. It may be true that if it rained last
night, the lawn is wet and yet false that if the lawn is wet, it rained
last night. But some conditionals do have the property that their
converse holds:

(19) a. If yesterday was Sunday, then today is Monday.
b. If today is Monday, then yesterday was Sunday.

The logician’s idiom if and only if can be used to succinctly ex-
press this kind of state of affairs:

(20) Today is Monday if and only if yesterday was Sunday.

The “if” part of this statement corresponds to (19a), which states
that yesterday’s being Sunday is a sufficient condition for today’s
being Monday. The “only if” part corresponds to (19b), or equiv-
alently, to Today is Monday only if yesterday was Sunday, which
states that yesterday’s being Sunday is a necessary condition for
today’s being Monday. (By contrast, in gardens with sprinklers, its
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being rainy yesterday is typically a sufficient but not a necessary
condition for the lawn’s being wet today.) This “if and only if” for-
mulation, sometimes abbreviated as “iff”, is also used as a way of
providing a definition of a concept with necessary and sufficient
conditions.

This brings us to the last propositional logic connective we will
introduce here: the BICONDITIONAL, written ↔, and sometimes
pronounced ‘if and only if’ (although as with the material condi-
tional, it is just the closest thing to that idea we can express as a
truth-functional connective). [p↔ q] is true whenever p and q
have the same truth value — either both true or both false. Its
truth table looks like this:

p q [p↔ q]

T T T

T F F

F T F

F F T

This truth table differs from that for [p→ q] only in the third row.
When p is false and q is true, [p→ q] is true but [p↔ q] is false.

3.2.4 Equivalence, contradiction and tautology

As mentioned above, if two formulas are true under exactly the
same interpretations, then they are EQUIVALENT. For example, p
and ¬¬p are equivalent; whenever one is true, the other is true,
and whenever one is false, the other is false, too:

p ¬p ¬¬p

T F T

F T F
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Exercise 14. Using truth tables, check whether the following pairs
of formulas are equivalent.

(a) [p ∨q]; ¬[¬p ∧¬q]

(b) [p→ q]; [¬p ∨q]

(c) ¬[p ∧q]; [¬p ∨¬q]

(d) [p ∨¬q]; ¬[p ∧¬q]

(e) [p→ q]; [¬q→¬p]

(f) [p→ p]; [p ∨¬p]
(The truth table for this one should only contain two rows,
since it doesn’t mention q .)

Two formulas are CONTRADICTORY iff for every assignment of
values to their variables, their truth values are different. For ex-
ample p and ¬p are contradictory.

p ¬p

T F

F T

Another contradictory pair is [p→ q] and [p ∧¬q].

p q [p→ q] ¬q [p ∧¬q]

T T T F F

T F F T T

F T T F F

F F T T F
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A TAUTOLOGY (also called valid formula) is a formula that is
true under every assignment. The opposite, an expression that is
false under every assignment, is called a CONTRADICTION; such a
formula is also called inconsistent or unsatisfiable. Formulas that
are neither valid nor inconsistent are called CONTINGENT, and for-
mulas that are either valid or contingent are called SATISFIABLE.
You can tell which of these categories a formula falls under by
looking at the pattern of Ts and Fs in the column underneath it
in a truth table: If they are all true, the formula is satisfiable and
valid; if some are true and others are false, it is satisfiable and con-
tingent; if they are all false, it is inconsistent. Here is a tautology:
[p ∨¬p] (e.g. It is raining or it is not raining):

p ¬p [p ∨¬p]

T F T

F T T

When two expressions are equivalent, the formula obtained by
joining them with a biconditional is a tautology. For example,
[p↔¬¬p] is a tautology:

p ¬p ¬¬p [p↔¬¬p]

T F T T

F T F T

Exercise 15. Which of the following are tautologies?

(a) [p ∨q]

(b) [[p→ q]∨ [q→ p]]

(c) [[p→ q]↔ [¬q ∨¬p]]
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(d) [[[p ∨q]→ r ]↔ [[p→ q]∨ [p→ r ]]]

Support your answer with truth tables.

3.3 Summary: Propositional logic

To summarize what we have covered so far, we are defining here
a simple propositional logic language called LProp. All languages
of propositional logic are like this language up to the choice of
propositional letters. We begin by listing all of the syntactic rules,
to define what counts as a well-formed expression of the language,
and then give the rules for semantic interpretation.

It is worth emphasizing that a logic is a language (or a class
of languages), and comes with both syntax and semantics. The
syntax specifies the well-formed formulas of the language. The
semantics specifies the semantic value of every well-formed for-
mula, given an interpretation.

3.3.1 Syntax of LProp

1. Atomic formulas

• Propositional letters: p, q , r

2. Complex formulas

• Negation (Unary connective): If φ is a formula, then
¬φ (‘not φ’) is a formula.

• Binary connectives: If φ and ψ are formulas, then so
are:

– [φ∧ψ] ‘φ and ψ’

– [φ∨ψ] ‘φ or ψ’

– [φ→ψ] ‘if φ then ψ’
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– [φ↔ψ] ‘φ if and only if ψ’

The outer square brackets with binary connectives are always
there according to the official rules of the syntax, but we some-
times drop them when they are not necessary for disambiguation.

3.3.2 Semantics of LProp

Let JφKI stand for the denotation of a given expression φ with re-
spect to an interpretation function I .

1. Propositional letters

• If φ is any propositional letter, then

JφKI = I(φ).

2. Complex formulas

• Unary connective: If φ is a formula, then J¬φKI =T if
JφKI = F, and F otherwise.

3. Binary connectives: If φ and ψ are formulas, then:

• Jφ∧ψKI =T if JφKI =T and JψKI =T, and F otherwise.

• Jφ∨ψKI = T if JφKI = T or JψKI = T (or both), and F
otherwise.

• (Semantic rules for→ and↔ are left as exercises.)

Exercise 16. Specify the semantic rules for the material condi-
tional.

Exercise 17. Specify the semantic rules for the biconditional.
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4.1 From propositional logic to predicate logic

In natural languages, sentences (clauses) may or may not consist
of other sentences (clauses). For example, the English sentence
Abelard is happy and Eloise is sad contains two sub-sentences (sub-
clauses), Abelard is happy, and Eloise is sad.1 These latter two sen-
tences do not contain any other sentences and in that sense they
can be said to be ATOMIC. Formulas are like this too: an ATOMIC

FORMULA contains no other formulas, while a COMPLEX FORMULA

contains other formulas. In this respect, propositional logic mir-
rors natural language accurately.

But in many respects, propositional logic is much simpler than
natural language. While we might represent Abelard is happy and
Eloise is sad as [p ∧q], and its first conjunct Abelard is happy as
p, we cannot break it down further. There is nothing in propo-
sitional logic that corresponds to Abelard or to happy. There are
many valid arguments that we would like to be able to capture
that depend on our ability to break the units into smaller parts; for

1Peter Abelard was a philosopher and theologian in 12th century Paris, ar-
guably the greatest logician of the Middle Ages and an important thinker on rea-
son and religion. His affair with Eloise, already renowned for her knowledge of
Latin, Greek and Hebrew when she arrived in Paris as a young woman, led to
their secret marriage and, tragically, to his castration. At that point, Abelard be-
came a monk, and Eloise a nun (and eventually a prioress). Their subsequent
correspondence is among the most moving and personal documents of the 12th
century.
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example, Abelard is happy entails Someone is happy. We’ve seen
similar arguments at the outset of the previous chapter, and we’ll
see plenty more as we proceed.

To gain a better tool for representing natural language, we will
now “split the atom”. This is the point where we go beyond the
resources of propositional logic and move into PREDICATE LOGIC.
The propositional letters and connectives of propositional logic
all carry over to predicate logic. But in predicate logic, atomic
formulas may be built up of several BASIC EXPRESSIONS—symbols
that have no internal structure even in predicate logic: names like
a (for Abelard) and e (for Eloise), predicate symbols like happy and
loves, and function symbols like ageInYearsOf or motherOf. Con-
strained by the syntactic rules that we will define for the language,
these basic expressions may be put together in various ways to
form atomic formulas. Predicate logic also has VARIABLES and
QUANTIFIERS, which we will delay until Section 4.2.

4.1.1 Individual constants

Predicate logic is a formal language that allows us to reason about
a given DOMAIN of entities. Individual objects are named by INDI-
VIDUAL CONSTANTS, also known as NAMES. In this book, we adopt
the convention that individual constants start with a lowercase
letter. In general, constants (including individual constants, pred-
icate symbols, and function symbols) may contain any sequence
of letters and numbers and underscores, but no spaces. For ex-
ample,

sam_smith

is a valid individual constant, but

S

is not, nor is
sam smith.
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Individual constants make up one kind of TERM in the logic. A
term is an expression that picks out an individual object in the
domain (like a proper name such as Sam or a definite description
such as the sun in natural language). Later, we will introduce vari-
ables, which are another type of term.

Recall that in propositional logic, expressions are interpreted
relative to an interpretation function I , which maps propositional
letters to truth values. In predicate logic, this interpretation func-
tion is given a more complex set of tasks, because it has to provide
denotations for all of the basic expressions of the language. One
of its jobs is to map individual constants to individuals (that is to
specify which individuals the names REFER to). It is customary to
write the set of individuals that are available for this purpose as D .
A pair ⟨D, I⟩, where D is a nonempty set and I is an interpretation
function, is called a MODEL for predicate logic, and we will use M
to refer to an arbitrary model of this kind. The set of individuals D
is called the UNIVERSE OF DISCOURSE or the DOMAIN of the model
in question. (Subscripts can be placed on M , D , and I when differ-
ent models and their components need to be distinguished. For
example, suppose M1 = ⟨D1, I1⟩, and M2 = ⟨D1, I2⟩. This means
that M1 and M2 are distinct models that share a domain.)2

To illustrate, we will define a language L0 and interpret it in
models whose domain consists of the four members of the Swedish
pop band ABBA, whose names are Agnetha, Björn, Benny, and
Anni-Frid (better known by her nickname Frida). Our language L0

should contain expressions that refer to these individuals. Let us
assume that expressions in L0 may contain the following individ-
ual constants: a,b,e, f. Let us also assume that our interpretation
function maps these constants to the four band members in the
order we have mentioned them. For this purpose, we will define
the set D0 as { Agnetha, Bjorn, Benny, Frida }, the set of ABBA

2This sense of the term domain is distinct from the sense introduced in chap-
ter 2, in which functions are mappings from a domain to a codomain. Thus, the
domain of a model is a subset of the codomain (and not of the domain) of the
model’s interpretation function.
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band members. We will also define an interpretation function I0

as follows:

(1) a. I0(a) =Agnetha
b. I0(b) =Björn
c. I0(e) =Benny
d. I0(f) = Frida

We will refer to the model ⟨D0, I0⟩ as M0. The interpretation func-
tion I0 is responsible for mapping all of the non-logical constants
to appropriate denotations based on D0. It will map individual
constants to elements of D0, and one-place predicates to subsets
of D0. Two-place predicates are mapped to subsets of D0×D0, the
Cartesian product of D0 with itself. That is to say, each two-place
predicate is mapped to a set of ordered pairs of individuals, where
each individual is taken from D0. However, D0 itself does not con-
tain any pairs. Predicates of higher arities are treated analogously.
The same remarks apply to other models than D0.

Since the interpretation function is a function, individual con-
stants in that language are not ambiguous; they pick out exactly
one object. This sets them apart from names in English such as
Björn, which can refer to any individual with that name. However,
not every individual object in a given model needs to have a cor-
responding individual constant in a given language. We could de-
fine a different model that includes any number of objects in the
model’s domain (say, Benny’s nose) that are not named by any in-
dividual constant in the language. To illustrate, within the model
M0 = ⟨D0, I0⟩ just defined, Benny’s nose is not in D0. Now con-
sider a model M1 = ⟨D1, I0⟩ where I0 is as before but D1 is defined
as { Agnetha, Björn, Benny, Frida, Benny’s nose }. Both models
have the same interpretation function I0. Now take a language L0

which contains the non-logical constants a,b,e, and f. Given this
setup, there is no individual constant in L0 that is mapped by I0 to
Benny’s nose in either M0 or M1.

There is an important distinction between the objects them-
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selves, which are not part of the formal language, and the non-
logical constants that name these objects, which are. While Benny
is a member of D0 and D1, and his nose is a member of D1, neither
Benny himself nor his nose is part of L0.

Just as in propositional logic, we define a DENOTATION FUNC-
TION that coincides with I on basic expressions like individual
constants and extends it to expressions of arbitrary complexity.
This function will now depend not only on I but rather on M as a
whole, and is therefore written J⋅KM rather than J⋅KI :

(2) a. JaKM0 =Agnetha
b. JbKM0 =Björn
c. JeKM0 =Benny
d. JfKM0 = Frida

Here, we refer to the actual members of ABBA in our meta-
language using their first names, and we write them capitalized
and in ordinary type face. To echo Dowty et al. (1981): If it had
been possible to persuade Agnetha Fältskog to come and occupy
the right-hand side of the equation above for a moment, that would
certainly have been preferable, but this is the closest we can come
given that we are communicating with the reader via the printed
page.

Starting in Chapter 6, we will define systems that relate En-
glish expressions to logical expressions, and thereby indirectly as-
sociate English expressions with denotations in the model. The
mapping between expressions of the natural language (English)
and their denotations (expressed in our meta-language) will thus
be mediated by our logical representation language. So our ulti-
mate theory will consist of two steps:

• Björn↝ b (English to logic)

• JbKM0 =Björn (logic to denotation)

We follow the convention of italicizing natural language (e.g. En-
glish) expressions here and throughout. We say that Björn TRANS-
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LATES TO b and that b (and, indirectly, Björn) DENOTES Björn. And
similarly for other expressions. Again, as discussed in Chapter 1,
the style of doing semantics we are adopting here is called INDI-
RECT INTERPRETATION. It differs from DIRECT INTERPRETATION in
that we map English to some logic (the representation language)
before assigning a denotation to natural language expressions.

Individual constants fall into the category of NON-LOGICAL CON-
STANTS. This category includes not only individual constants but
also some additional types of symbols that will be introduced be-
low: predicate and function symbols. Why are they called ‘non-
logical’ constants? In general, CONSTANTS are expressions whose
denotation does not vary once a model has been specified. LOGI-
CAL CONSTANTS are things like ∧, whose denotation does not even
vary from model to model; thus, ∧ behaves according to its truth
table across all models. The denotations of NON-LOGICAL CON-
STANTS, on the other hand, depend on the model, and can vary
from model to model. Later, we will introduce variables, whose
denotation can vary even once a model has been specified.

The following rule ensures that the J⋅KM function tracks the I
function on individual constants.

Semantic Rule: Non-logical constants
If α is a non-logical constant and M = ⟨D, I⟩, then:

JαKM = I(α)

Like φ and ψ in Section 3.2, α is a meta-variable. It is not part of
the language L0 we are defining but only part of the meta-language
we are using to talk about that language. In the next section, we
will see further applications of the semantic rule for non-logical
constants.
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4.1.2 Predication

4.1.2.1 Syntax of predication

True to its name, predicate logic has PREDICATES, along with indi-
vidual constants. Predicates are expressions that stand, intuitively
speaking, for properties (such as being female, being Swedish, or
singing) or for relations (such as loving, or being between). Predi-
cates that stand for properties are called UNARY PREDICATES. Pred-
icates that stand for relations are called BINARY PREDICATES, TER-
NARY PREDICATES, or more generally, n-ARY PREDICATES depend-
ing on the number of entities they relate. A unary predicate com-
bines with one term (sometimes called its ARGUMENT) to produce
a statement that is true or false, depending on whether the indi-
vidual denoted by the term has the property in question; if so, we
also say that the predicate HOLDS of the individual. A binary pred-
icate applies to two terms, a ternary predicate applies to three,
and so on. In first-order logic, all predicates apply to individuals;
in higher-order logic, predicates may also apply to other predi-
cates.

In this book, the first letter of a predicate symbol will be lower
case, as in female, swedish or sings. We will use the same style for
non-unary predicates such as loves or between. As in the case of
propositional letters, we will use interpretation functions to asso-
ciate these symbols with denotations. The denotation of a unary
predicate is a set of individuals (such as the set of female or Swedish
or singing individuals). Predicate symbols combine with individual-
denoting expressions to form ATOMIC FORMULAS. Like in proposi-
tional logic, formulas are true or false given a model. For example,

(3) swedish(a)

is a formula that consists of the predicate symbol Swedish and the
constant a. Assume that we have a model that is defined in such
a way that the predicate symbol Swedish denotes the set of indi-
viduals who are Swedish at the time of writing, and the constant
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a denotes Agnetha Fältskog, the ABBA singer. (We will make simi-
lar assumptions throughout.) Given this model, the formula in (3)
denotes T if and only if Agnetha Fältskog is Swedish (which she
is). Another way of talking about what is going on in (3) is that
Swedishness is being ‘predicated of’ Agnetha Fältskog, so (3) can
be called a PREDICATION. We will say more about the semantics of
predications after we have laid out their syntax.

A BINARY PREDICATE denotes a relation between two individ-
uals, and therefore combines with two terms. As an example of a
binary predicate, we will use loves. A possible denotation for this
predicate (in a given model) is the relation (the set of pairs) that
contains a given pair of two individuals just in case the first loves
the second in the actual world at the time of writing. A binary
predicate combines with two terms:

(4) loves(a,b)

We say that the predicate loves HOLDS OF, APPLIES TO, or RELATES

its two arguments. When translating transitive verbs like love from
English to logic, the usual (and arbitrary) convention is to list the
subject of an active sentence before its object. That is, we read (4)
as “Agnetha loves Björn”, not as “Björn loves Agnetha”.

The number of terms that a predicate symbol combines with
is its ARITY, also called VALENCE or ADICITY (which sometimes gets
misspelled as acidity). Unary predicates take one term, and there-
fore have an arity of 1. Binary predicates have an arity of 2. A
TERNARY PREDICATE has an arity of 3. As an example, we might
define a ternary predicate BETWEEN, and assume that it denotes
the relation that holds of three objects x, y and z, if and only if x is
between y and z. There is no upper limit to the arity of predicates
in logic. Sometimes it is useful to regard propositional letters as
ZERO-PLACE or NULLARY predicates. It is also common to speak of
ONE-PLACE or MONADIC, TWO-PLACE or DYADIC, and generally of
n-ARY, n-PLACE or n-ADIC PREDICATES.

Predicates combine with the appropriate number of terms to
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form ATOMIC FORMULAS. As we have seen above, singer(a) is an
atomic formula. Here a unary predicate singer combines with a
single term, enclosed in parentheses, to form an atomic formula.
A binary predicate combines with two terms, enclosed in paren-
theses, to form an atomic formula. Thus (4) is also an atomic for-
mula.

The following syntactic rule, introducing predicate-argument
combinations into the language, enforces a match between the
arity of a predicate and the number of terms it combines with:

Syntactic rule: Predication
Given any predicate π, if n is the arity of π, and α1, ...,αn is a se-
quence of terms, then

π(α1, ...,αn)

is an atomic formula.

(A summary of definitions like this can be found at the end of this
section.)

The arity of a predicate is fixed in predicate logic. The arity of
corresponding natural language expressions is much more free;
for example, English allows the adjective excited to take a preposi-
tional phrase complement but does not require it to.

(5) a. Agnetha is excited about Benny.
b. Agnetha is excited.

In predicate logic, a predicate like Excited may only have a sin-
gle arity; it cannot be both unary and binary. To represent the
difference between the transitive and intransitive version of ex-
cited in English, one option would be to define two predicates,
say, a unary predicate excited1 and a binary predicate excited2,
which would produce well-formed formulas with the correspond-
ing numbers of terms.

(6) a. excited1(a)
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b. excited2(a,e)

To capture how close in meaning these two predicates otherwise
are, a theory could stipulate facts about how they relate to each
other via constraints that are stipulated separately. (See MEANING

POSTULATES below.)

Exercise 1. Give two examples of atomic formulas generated by
the syntactic rule of Predication, choosing from the following in-
dividual constants and predicates:

• a and b are individual constants (a.k.a. ‘names’);

• singer and Swedish are one-place predicates;

• Knows and loves are two-place predicates.

4.1.2.2 Semantics of predication

So much for the syntax of predication. Now let us turn to the se-
mantics. We will begin with some gossip. As it happens, in the
1970s, ABBA was composed of two married couples: Björn and
Agnetha, as well as Frida and Benny. It therefore follows, by the
principle that whenever two people are married to one another
that they also love each other, that the sentences corresponding
to the following formulas were true:

(7) a. loves(a,b)
b. loves(b,a)

(8) a. loves(e,f)
b. loves(f,e)

Now, as it happens, like all good things, both of the marriages
eventually came to an end, and these four statements, concomi-
tantly, ceased to be true (we assume). So far, we have only had
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one model, M0. To distinguish between the way it was in the past,
and how things later turned out, we will now edit it in two differ-
ent ways: MTHEN corresponds to how it was back in the day, and
MNOW to how it is now. These two models share the same domain,
D0, but their interpretation functions will differ. We will define
MTHEN = ⟨D0, ITHEN⟩ and MNOW = ⟨D0, INOW⟩. (The subscripts THEN

and NOW on these models and their components are meaningless;
we just use them to label the two models in an easy-to-remember
way.)

Relative to these two different models, the binary predicate
loves has two different semantic values. Accordingly, we make the
following assumptions about ITHEN and INOW:

(9) ITHEN(loves) =
{⟨Agnetha,Björn⟩, ⟨Björn,Agnetha⟩,
⟨Frida,Benny⟩, ⟨Benny,Frida⟩}

(10) INOW(loves) = {}

That is, back in the day, Agnetha and Björn loved each other, and
so did Benny and Frida, but now, nobody loves each other. What
we have done here is interpret the denotation of the binary predi-
cate loves as a binary relation, that is, a set of ordered pairs.

Just as we did for individual constants, we need to make sure
that J⋅KM function tracks the I function on predicates. We already
have a rule that ensures this for all non-logical constants, so all we
need to assume is that predicates count as non-logical constants.
The semantic rule for non-logical constants given above then en-
sures that for any predicate α, JαKM = I(α).

Just as we did for propositional letters, we will assume that the
denotation of a formula like singer(a) is a truth value:

Jsinger(a)KM =T if JaKM ∈ JsingerKM , and F otherwise.

The denotations of non-logical constants (including names and
predicates) can differ across models. In some models, f denotes
Frida, and in other models, it doesn’t. In some models, Frida is in
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the denotation of singer, and in other models, she’s not. Assum-
ing the individual constant f does denote Frida, the truth value of
singer(f) depends on whether Frida is in the denotation of singer.
In general, for any given unary predicate π and any given term α,
we would like the semantics of our language to ensure the follow-
ing:

Jπ(α)KM =T if JαKM ∈ JπKM , and F otherwise.

This can be read, “the semantic value of pi applied to alpha (with
respect to model M) is T, if the semantic value of alpha (with re-
spect to M) is an element of the semantic value of pi (with respect
to M), and F otherwise.” To put it somewhat more elegantly: “Rel-
ative to any given model, the predication of π upon α is true in
that model if and only if the denotation of α in that model is a
member of the set denoted by π in that model.”

Our semantics should also ensure that the formula loves(a,b)
is true relative to MTHEN and false relative to MNOW.

(11) a. Jloves(a,b)KMTHEN =T
because ⟨Agnetha,Björn⟩ ∈ JlovesKMTHEN

b. Jloves(a,b)KMNOW = F
because ⟨Agnetha,Björn⟩ /∈ JlovesKMNOW

In general, for any binary predicate π, and any given terms α and
β, our semantics should ensure:

Jπ(α,β)KM =T if ⟨JαKM ,JβKM ⟩ ∈ JπKM , and F otherwise.

This strategy can be generalized to predicates of arbitrary arity
as follows:

Semantic Rule: Predication
If π is a predicate of arity n and α1, ...,αn is a sequence of terms,
then:

Jπ(α1, ...αn)KM =T if ⟨Jα1KM , ...,JαnKM ⟩ ∈ JπKM , and F otherwise.
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To make sure this works as expected in the unary case, we adopt
the convention that ⟨JαnKM ⟩ = JαnKM .

Exercise 2. Suppose we have a particular model M2 = ⟨D2, I2⟩. Let
D2 = {Agnetha, Björn, Benny, Frida}. Suppose that in M2, every-
body loves themselves and nobody loves anybody else, and the
binary predicate loves denotes the ‘love’ relation. What is then the
value of I2(loves)? Specify the relation as a set of ordered pairs.

Exercise 3. Assume a model

M3 = ⟨D3, I3⟩

where D3 contains Abelard and Eloise:

D3 = {Abelard, Eloise}
and I3 is defined as follows:

I3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a → Abelard
e → Eloise
female → {Eloise}
scholar → {Abelard, Eloise}
loves → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩,⟨Eloise,Eloise⟩}
teacher → {⟨Abelard,Eloise⟩}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For each of the following formulas, use the semantic rule of Pred-
ication to determine its semantic value in model M3:

(a) teacher(a,e)

(b) teacher(e,a)

(c) loves(a,a)

(d) scholar(a)

(e) female(a)
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On a philosophical note: As in the case of propositional let-
ters, we can think of predicate symbols either as carrying intrinsic
meanings, or as being devoid of any intrinsic meaning apart from
what the model supplies. On the first view, the model (and more
specifically, its interpretation function) corresponds to a possible
world (or way things could be), and its specification of denota-
tions for each of the predicates constitutes a specification of how
that world is. On this view, the predicate Sings has some intrinsic
meaning. On the second view, the model supplies an otherwise
meaningless symbol with a denotation, and the predicate Sings
has no intrinsic meaning. The model associates it with a set of
individuals, and there is nothing more to it than that.

Because a model assigns sets to different predicate symbols
independently of one another, the two perspectives are equiva-
lent only as long as one assumes that the intrinsic meanings of
different predicate symbols are independent of one another. By
contrast, if we were to take the predicate symbols bachelor and
married in a given language to stand for the properties of being a
bachelor and of being married, a model that maps the two pred-
icate symbols to overlapping sets would not correspond to any
possible circumstance (since it’s impossible for a bachelor to be
married). MEANING POSTULATES are a mechanism for limiting
attention to just those models in which these formulas are true;
these are called ADMISSIBLE MODELS. A typical meaning postulate
is a formula that might correspond to a sentence like “No bachelor
is married” or “It is not both Tuesday and Wednesday”. Even if one
takes the view that predicate symbols are inherently meaningless,
the use of meaning postulates can be seen as imbuing these sym-
bols with some degree of meaning, at least enough so that they
interact with other symbols in the way that would be expected if
they corresponded to particular concepts that the theorist has in
mind.

Draft January 18, 2024



Predicate logic 129

4.1.3 Functions

Recall that a TERM is an expression that denotes an individual in
the domain. So far, the only kind of term that we have seen are
individual constants. But it is also possible to form syntactically
complex terms using FUNCTION SYMBOLS. A function symbol de-
notes a function, in the sense defined in Chapter 2. In first-order
logic, a function symbol denotes a function from individuals (or
n-tuples of individuals) to individuals. This means that the func-
tion has to associate every individual in the relevant domain with
a value (which is also an individual in that domain), and provide
a unique output for each input. In this, function symbols contrast
with predicate symbols, which denote sets.

Confining our attention to models where every individual in
the domain has exactly one spouse,

spouseOf(e)

could be used to denote the spouse of Benny. (We continue to as-
sume throughout that e denotes Benny.) It is not used to make a
claim about Benny, like a predicate does, and the entire expres-
sion does not express something that can be true or false, as in
the case of a predicate. Rather, this expression denotes a particu-
lar individual.

Syntactically, function symbols combine with terms. Combi-
nations of function symbols with terms are called COMPLEX TERMS.
Since complex terms are terms, they can appear in all the same
positions as individual constants and other terms. For instance,
complex terms can fill the first argument slot of a binary relation:

loves(spouseOf(b),b)

This formula can be read as saying that Benny’s spouse loves him
(Benny).

Complex terms can even combine with function symbols again.
For example, the following is a complex term that can be used to
refer to Benny’s spouse’s spouse, or in other words, Benny himself:
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spouseOf(spouseOf(b))

Predicates and functions are easy to confuse with each other,
because they both combine with terms in parentheses. To dis-
tinguish between them, this textbook uses the following conven-
tions: functions that output individuals end in of unless we ex-
plicitly specify otherwise. (These conventions are just what we do
in this book. There is no standard set of conventions of that sort
across the field.) This way, all terms (both individual constants
and complex terms formed with functions) start with lowercase
letters. As with predicate and name symbols, we follow the con-
vention that any sequence of numbers or letters or underscores
may follow the initial letter, but no spaces.

Functions, like predicates, have a particular arity. The func-
tion spouseOf has arity 1 (i.e, it is a UNARY FUNCTION). As an ex-
ample of a function with arity 2, suppose that in model M1, the
expression tallerOneOf denotes the function that takes two argu-
ments and returns whichever one is taller at the time of writing.
Assuming Frida is currently taller than Agnetha,

tallerOneOf(a, f)

denotes Frida in M1. In general:

Syntactic rule: Complex terms
Given any function γ with arity n, then:

γ(α1, ...,αn)

is a term, where α1, ...,αn is a sequence of expressions that are
themselves terms.

The denotation of function symbols is specified by the inter-
pretation function I . Just like individual constants and predicate
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symbols, function symbols are considered non-logical constants;
therefore, their denotation is derived from I according to the same
rule as individual constants and predicate symbols. However, func-
tion symbols combine with terms in a slightly different manner
from the way predicate symbols do. The denotation of a function
symbol applied to a term is the result of applying the function de-
noted by the function symbol to the denotation of the term, as op-
posed to checking for set membership. For example, suppose that
in model M1, spouseOf denotes a function that returns Frida when
given the individual Benny as an argument. Then spouseOf(e) de-
notes Frida, i.e., JspouseOf(e)KM1 = Frida. In general:

Semantic Rule: Complex terms
If γ is a unary function symbol, and α is a term, then:

Jγ(α)KM = JγKM(JαKM)

The preceding formula can be read, “the semantic value of gamma
applied to alpha (in model M) is equal to the semantic value of
gamma (in M) applied to the semantic value of alpha (in M).”
Observe that we are using parentheses around alpha both in the
object language (in this context, the formal representation lan-
guage) and the meta-language here. The parentheses in the ob-
ject language (on the left) help to create a complex term consist-
ing of the function symbol and its argument. The parentheses in
the meta-language (on the right) signify the application of the de-
noted function to the actual individual denoted by the term.

A binary function symbol like tallerOneOf combines with two
terms. In general:

If γ is a binary function, and α and β are terms, then:

Jγ(α,β)KM = JγKM(⟨JαKM ,JβKM ⟩)
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This definition can be generalized to accommodate functions of
arbitrary arity:

Semantic Rule: Complex terms
If γ is a function of arity n, and α1, ...,αn is a sequence of n terms,
then:

Jγ(α1, ...,αn)KM = JγKM(⟨Jα1KM , ...,JαnKM ⟩)

Exercise 4. Which of the following are well-formed formulas? As-
sume happy is a unary predicate, spouseOf is a unary function, and
tallerOneOf is a binary function (you can assume that it returns
the taller one of two individuals).

(a) happy(spouseOf(a))

(b) happy(spouseOf(a,e))

(c) happy(tallerOneOf(a,e))

(d) happy(spouseOf(a),spouseOf(e))

4.1.4 Identity

It is useful to be able to express that two terms refer to the same
individual. For this purpose, we will add a special two-place pred-
icate to our language, the equality symbol =. This symbol is inter-
preted as the identity relation, which holds between any individ-
ual and itself, and does not hold between any distinct individuals.
While identity is technically a binary predicate, it behaves differ-
ently from all other predicates in the language. For this reason, it
is common to speak of “predicate logic with identity” or “predi-
cate logic without identity” depending on whether the predicate
is included or left out.
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Syntactically, the identity symbol is used to form atomic for-
mulas by joining two terms. Unlike other predicate symbols, it is
inserted between the terms and not in front of them. The follow-
ing are all atomic formulas:

a = e
spouseOf(a) = b

f = tallerOneOf(f,a)
The following rule dictates that any two terms, simple or complex,
can be joined in this way to form an atomic formula:

Syntactic Rule: Identity
If α and β are terms, then α =β is an atomic formula.

This rule only applies to terms; formulas cannot be joined by an
equals symbol. To join two formulas, the biconditional symbol↔
can be used instead.

Semantically, the interpretation of identity is independent of
the model. Unlike predicates, but similarly to connectives, the in-
terpretation of the symbol does not vary from model to model.
This makes identity a logical rather than non-logical constant.

Semantic Rule: Identity
If α and β are terms, then Jα =βKM = T if JαKM = JβKM , and F
otherwise.

Exercise 5. For each of the following, say whether it is well-
formed, and give a paraphrase in English. (For the ones that are
not well-formed, the paraphrase in English might sound like non-
sense, and that’s OK.)
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(a) spouseOf(a) = spouseOf(e)

(b) spouseOf(a)↔ spouseOf(e)

(c) happy(spouseOf(a))↔ happy(spouseOf(e))

(d) happy(spouseOf(a)) = happy(spouseOf(e))

It is common to extend predicate logic with other binary pred-
icates taken from mathematics as well, such as q , ≤, or ∈. These
predicates often receive a special treatment, both syntactically and
semantically. Syntactically, they are most commonly written in
between the terms they apply to, as in a = b instead of = (a,b).
Semantically, they are usually treated as logical rather than non-
logical constants. In this chapter, the only such predicate we are
adding to our logic is identity (=). In chapter 10, we will add a
predicate standing for the parthood relation.

Section summary

To summarize, our formal language so far is made up of basic and
complex expressions. We have the following types of basic expres-
sions, which are all non-logical constant symbols in our language.

CATEGORY EXAMPLE

individual constants a

unary predicates singer

binary predicates loves

function symbols spouseOf

In addition to our basic expressions, we have syntactic and se-
mantic rules for creating complex terms using function symbols,
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and two ways of creating atomic formulas: predication and iden-
tity. Both of these types have a corresponding semantic rule. On
top of this we retain all of the syntactic and semantic rules from
propositional logic, including negation and the rules for creating
complex formulas using binary connectives.

Exercise 6. Let us consider a model M4 = ⟨D4, I4⟩ with domain D4

consisting only of two individuals: Abelard and Eloise. Let us as-
sume that among our basic expressions we have names for both
Abelard and Eloise (say a and e respectively), as well as the unary
predicates scholar, male, and female, binary predicates loves and
younger, and the function terms spouseOf and selfOf. The in-
tended interpretation of selfOf is a function that applies to an in-
dividual and returns that very individual that was given as input
as output. Fill in the missing values in the interpretation function,
according to what you think they should be based on the constant
symbol:

I4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a → Abelard
e → Eloise
female → {Eloise}
male →

scholar → {Abelard, Eloise}
loves → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩,⟨Eloise,Eloise⟩}
younger → {⟨Eloise,Abelard⟩}
spouseOf → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩}
selfOf →

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Exercise 7. Fill in the following table based on the rules of L0.

Term or formula? J⋅KM4 Semantic Rule(s)
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spouseOf(a) term Eloise Complex terms

female(a) formula F Atomic formulas

male(a,e) not well-formed! N/A N/A

younger(a,e)

younger(spouseOf(e),e)

loves(a,selfOf(a))

spouseOf(spouseOf(e))

scholar(selfOf(selfOf(a)))

scholar(a,selfOf(a))

younger(selfOf(selfOf(a)))

In the first labelled column, state whether the expression is a term,
a formula, or not well-formed. In the second, give the seman-
tic value relative to the model you designed in exercise 6. In the
third, indicate the semantic rule(s) you used to derive the seman-
tic value in the second column.

Exercise 8. This exercise has seven parts, labelled (a)-(g) below.
One of the following arguments is valid and the other is not.

The valid one, of course, is (12).

(12) a. Ben and Jerry are brothers.
b. ∴Ben is Jerry’s brother.

(13) a. Ben and Jerry are computers.
b. /∴Ben is Jerry’s computer.

Relational nouns are nouns that denote two-place predicates
(a.k.a. ‘binary relations’); sortal nouns are ones that denote one-
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place predicates. When N is a relational noun, representable as a
binary relation R, a sentence of the form ‘x and y are N s’ can be
translated into predicate logic as:

[R(x, y)∧R(y, x)]

In other words, the construction asserts that x and y stand in the
relation to each other. (This explains why Jerry and Ben are broth-
ers is unremarkable but ??Jerry and Sheila are brothers is quite jar-
ring, under conventional assumptions about what names signal
about the gender of the referent.) In this sense, the construction
expresses a reciprocal relation between x and y .

When N is a sortal noun, representable by predicate P , a sen-
tence of the form ‘x and y are N s’ can be translated into predicate
logic as:

[P(x)∧P(y)]

In other words, the construction says that both x and y have
the property in question. Let’s think about how this theory can
explain the contrast in the preceding question. First, we need to
decide how to classify the nouns brother and computer.

(a) Should we classify brother as sortal or relational?
(b) How about computer?

With these assumptions, let us now provide translations into
predicate logic, starting with the (a) sentences. Use Brother as
your translation for brother and Computer for computer, and use
the individual constants b and j as your translations for Ben and
Jerry respectively. Make sure that your formulas are well-formed
according to our syntax rules!

(c) Ben and Jerry are brothers.
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(d) Ben and Jerry are computers.

Possessive statements of the form ‘x is y ’s N ’ must be ana-
lyzed slightly differently depending on whether N is sortal or
relational. If N is relational, and denotes the binary relation R,
then ‘x is y ’s N ’ just expresses that x and y stand in the relation R:

R(X ,Y )
On the other hand, if N is sortal, then ‘x is y ’s N ’ expresses (i)

that x is an N and (ii) that some kind of possessive relation holds
between x and y . Let’s use the two-place predicate poss to denote
this possession relation (which must be general enough to cover
a broad range of more specific possessive relations that may be
implied in context). Let’s use poss(y, x) to signify ‘y possesses x’.
So for a sortal noun N translated as one-place predicate P , ‘x is
y ’s N ’ would be translated as:

[P(x)∧poss(y, x)]
With this in mind, give a translation for the following sen-

tences:

(e) Ben is Jerry’s brother.
(f) Ben is Jerry’s computer.

Now we are in a position to derive the fact that (12) and (13)
above differ in validity. In general, arguments of the following
form are valid:

[φ∧ψ]
∴φ

(g) Based on this fact (called conjunction elimination) and the
translations into logic that we have given, explain why the infer-
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ence is valid in one example but not the other. (Make sure to ad-
dress both examples.)

4.2 Quantification

Consider this argument:

(14) Aristotle taught Alexander the Great.
Alexander the Great was a king.

∴Aristotle taught a king.

Construing teaching as a binary relation that holds between teach-
ers and their students, the conclusion of this argument is true in
any case where Aristotle stands in the teaching relation to an in-
dividual that is a king. How can we express this formally? If we
had names for all of the kings, then we could express this using
the tools we have by saying something along the lines of, “Aristo-
tle taught King So-and-So or Aristotle taught King Such-and-Such
or ...” and so on for all of the kings. But this is quite inconvenient,
and it will not work if there are individuals without names. All we
want to say is that there is some entity, call it x, such that Aristo-
tle taught x and x is a king. This can be done using variables. A
VARIABLE is a symbol that is just like a constant symbol except that
the model does not specify the individual it stands for (unlike in
the case of constants). We will use the symbols x, y , and z, and
similar ones that we will introduce later, as variables, and never
as constants. The condition that the object should satisfy may be
written as follows:

(15) [taught(aristotle, x)∧king(x)]

This is a well-formed formula of first-order logic, but it does not
make a claim, even once the model is fixed; it just describes a con-
dition that whatever individual x stands for might or might not
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satisfy. This is because the occurrence of the variable x in this for-
mula is not BOUND by any quantifier (so it is FREE). To make the
claim that there is some individual that satisfies this condition, we
may use the EXISTENTIAL QUANTIFIER, ∃.

(16) ∃x[taught(aristotle, x)∧king(x)]

This can be read, “There is (or: exists) an x such that Aristotle
taught x and x is a king” or “For some x, Aristotle taught x and
x is a king”. And this formula will be true in any model where the
individual denoted by aristotle stands in the relation denoted by
taught to some element of the set denoted by king, or as we will
put it, in any model where there is a king that Aristotle taught (we
will use similar simplifications from now on).

The other quantifier of predicate logic is the UNIVERSAL QUAN-
TIFIER, written ∀. If we had used the universal quantifier instead
of the existential quantifier in the formula in (16), we would have
expressed the claim that everything satisfies the condition in (15).
Thus everything was taught by Aristotle and everything is a king.
That is probably not something one would ever feel the urge to ex-
press, but there are plenty of other practical uses for the universal
quantifier. For example, consider the sentence Every philosopher
studies Aristotle. We can represent this as follows:

(17) ∀x[philosopher(x)→ studies(x,aristotle)]

This can be read, “For all x, if x is a philosopher, then x studies
Aristotle.” (“For every x” is also fine instead of “For all x”, and we
will use both formulations interchangeably.) We would be saying
something very different if we had a conjunction symbol (∧) in-
stead of a material conditional arrow (→) in this formula, thus:

(18) ∀x[philosopher(x)∧ studies(x,aristotle)]

This says, “For all x, x is a philosopher and x studies Aristotle” – in
other words, “Everything/everyone is an philosopher and every-
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thing/everyone studies Aristotle.”
Let us take some time to reflect on why the universally quan-

tified formula with the material conditional above expresses the
every claim, that every philosopher studies Aristotle. We will for-
malize the semantics of universally quantified statements shortly,
but intuitively, here is how it works. What this formula expresses
is that each element of the domain satisfies the condition:

(19) [philosopher(x)→ studies(x,aristotle)]

As we will see, the semantics for ∀ asks us to go through each in-
dividual in the domain, and consider what happens when x is in-
terpreted as that individual. There are two types of cases that are
important to consider: the value of x is a philosopher, or the value
of x is not a philosopher. Consider a value for x which is not a
philosopher. For this value of x, the condition

philosopher(x)

is not met, so the antecedent is false. By the definition of the ma-
terial conditional, this means that the conditional as a whole is
true. So any value for x that is not a philosopher vacuously satis-
fies [philosopher(x)→ studies(x,aristotle)]. The only kind of value
for x that could fail to satisfy this condition would be a philoso-
pher that did not study Aristotle. Then the antecedent would be
true, and the consequent would be false, so the conditional state-
ment as a whole would be false. If there are no philosophers that
do not study Aristotle, then the formula is true. And this is exactly
what Every philosopher studies Aristotle says.

Now consider the following formula:

(20) ∀x[linguist(x)→ ∃y[philosopher(y)∧admires(x, y)]]

If we were to read this aloud, symbol for symbol, we would say,
“For every x, if x is a linguist, then there exists a y such that y is
a philosopher and x admires y .” A more natural way of putting
this would be “Every linguist admires a philosopher.” But “Every
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linguist admires a philosopher” is actually ambiguous. It could
mean two things:

1. For every linguist, there is some philosopher that the lin-
guist admires (possibly a different philosopher for every lin-
guist).

2. There is one lucky philosopher such that every linguist ad-
mires that philosopher.

The latter reading can be translated as follows:

(21) ∃y[philosopher(y)∧∀x[linguist(x)→ admires(x, y)]]

Predicate logic is thus a tool for teasing apart these kinds of am-
biguities in natural language. What we have just seen is an in-
stance of QUANTIFIER SCOPE AMBIGUITY. The first reading is the
one where “every linguist” takes WIDE SCOPE over “a philosopher”.
On the second reading, “every linguist” has NARROW SCOPE with
respect to “a philosopher”.

Quantifiers can also take wide or narrow scope with respect
to negation. Consider the sentence “Everybody isn’t happy”. This
could mean either one of the following:

(22) a. ∀x .¬happy(x)
b. ¬∀x .happy(x)

The first formula, where the universal quantifier takes wide scope
over negation says, “For every x, it is not the case that x is happy.”
The second formula, where the quantifier has narrow scope with
respect to negation says, “It is not the case that for every x, x is
happy.” The first one states that nobody is happy. The second one
states merely that there is at least one person who is not happy.

Exercise 9. For each of the following formulas, say (i) how you
would read the formula aloud, using phrases like ‘for all x’ and
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‘there exists an x such that’ and (ii) give a natural paraphrase in
English.

(a) ∀x . friendly(x)

(b) ∀x[friendly(x)∧happy(x)]

(c) ∃x[friendly(x)∧happy(x)]

(d) ∃x[friendly(x)∨happy(x)]

(e) ∀x[friendly(x)→ happy(x)]

(f) ∀x .¬friendly(x)

(g) ∃x .¬friendly(x)

(h) ¬∃x . friendly(x)

(i) ∀x .∃y . loves(y, x)

Exercise 10. For each of the following sentences, say which of the
formulas above it matches (if any). (In some cases, the sentence
might match two formulas.)

(a) Somebody is friendly and happy.

(b) Everybody is friendly and happy.

(c) Everybody who is friendly is happy.

(d) Nobody is friendly.

(e) Somebody is not friendly.

(f) Somebody is friendly or happy.
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(g) Everybody loves somebody.

(h) Somebody loves everybody.

Exercise 11. Which of the following statements in first-order logic
better represents the denotation of Every cellist smokes?

(a) ∀x[cellist(x)→ smokes(x)]

(b) ∀x[cellist(x)∧ smokes(x)]

Exercise 12. Express the following sentences in a variant of LPred

that you have augmented with any necessary basic expressions:

(a) There is a red car.

(b) All cars are red or green.

(c) No car is blue.

(d) Alan dislikes all cars.

Feel free to add as many non-logical constants as you need.

Exercise 13. Express the following sentences. In some cases, there
may be quantifier scope ambiguity; in that case, give a represen-
tation corresponding to both interpretations.

(a) Every even number is divisible by two.

(b) Everything has a reason.
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(c) Something is the reason for everything.

(d) Every human being has at least two mothers.

(e) All fathers are older than their children.

(f) If a man is a philosopher then he is mortal.

(g) Some statues are not of marble.

(h) All statues are not of marble.

(i) He who sins sleeps badly.

Feel free to add as many non-logical constants as you need.

Note: This exercise is extremely challenging!

Now let us start to give a formal definition of the syntax of a
language with variables and quantifiers. We will refer to this lan-
guage as LPred. We will allow an infinite number of variables of the
form xi , yi , or zi , where i is any nonnegative integer. For example,
our xi variables include x0, x1, x2, and so on. We use x as an ab-
breviation for x0, and similarly for y and z. (It is not good practice
to mix the abbreviated and non-abbreviated versions of the same
variable, so x and x0 should never both be used within the same
formula.) We will also add new formation rules for the universal
quantifier ∀ and the existential quantifier ∃.

Syntactic rule for LPred: Quantification
Given any variable u, if φ is a formula, then

[∀u .φ]
is a formula, and so is

[∃u .φ]
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In this rule, the symbols u and φ are meta-variables; that is to say,
they belong to our meta-language (English with some mathemat-
ical bits mixed in). They stand for variables (such as x) and for-
mulas (such as happy(x)) that can occur in formulas of the logic,
but they themselves cannot occur in any formulas. For example,
[∀x .happy(x)] is a well-formed formula according to these rules
(but [∀u .happy(u)] and [∀x .φ] are not).

As an abbreviatory shorthand, whenever there is no risk of
ambiguity we may drop the brackets around the formula (as we
have already done in many cases). We may also drop the dot af-
ter the variable when it is immediately followed by a bracket, e.g.
∀x[happy(x)→ friendly(x)]. In a formula of the form [∀u .φ] or
[∃u .φ], we call φ the SCOPE of the quantifier. When the outer
brackets are dropped, the dot indicates that the scope of its quan-
tifier extends as far to the right as possible.

Now for the semantics. We continue to treat models as pairs
consisting of a domain and an interpretation function, so a given
model M will be defined as ⟨D, I⟩ where D is the set of individuals
in the domain of the model, and I is a function giving a value to
every non-logical constant in the language. Informally,

(23) ∀x .happy(x)

is true in a model M if (and only if) no matter which individual we
assign as the interpretation of x,

(24) happy(x)

is true. Likewise, informally,

(25) ∃x .happy(x)

is true iff we can find some individual to assign to x that makes
happy(x) true.

Since we are doing first-order logic, all our variables range over
individuals. In higher-order logic, variables can also stand for pred-
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icates. Here are two examples of statements that can be expressed
as a single formula in higher-order logic but not in first-order logic:

(26) a. Napoleon had all the properties of a good general.
b. No two distinct objects have the same properties.

Example (26b) is often referred to as the law of the Identity of In-
discernibles, or Leibniz’s Law. We will put off higher-order logic
until Chapter 5.

As we have seen, a formula can in principle have multiple quan-
tifiers. For example:

∀x[happy(x)→ ∃y .Likes(x, y)]

This says, ‘everything that is happy likes something.’ Whether or
not it is true, it contains two variables and two quantifiers. The
outermost formula is true if every individual in the domain is an
x such that:

[happy(x)→ ∃y .Likes(x, y)]
In order to evaluate whether this holds for a given x that is happy,
we will need to determine whether there is a y that x likes. So we
will need to hold the value of x fixed while we look for a suitable y .
For sentences with multiple quantifiers, then, we need to simulta-
neously consider the values we are assigning to multiple variables.
ASSIGNMENT FUNCTIONS allow us to do just that.

Variables should not be confused with constants; they are the
opposite of constants. While constants get their interpretation
from the interpretation function (which is part of the model), vari-
ables get their interpretation from the assignment function (which
is not part of the model, and which is acted on by quantifiers). The
model continues to consist of just a domain of individuals and an
interpretation function.

An assignment function is a function that specifies for each
variable, how that variable is to be interpreted, by mapping it to
an individual. Here are some examples of assignment functions:
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g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Benny
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

g2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Benny
y → Björn
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The domain of an assignment function is the set of variables.

In order to interpret an expression like happy(x), we need both
a model and an assignment function: The model tells us who is
happy, and the assignment function determines a value for x. For
uniformity, our denotation function will always be relativized to
both a model and an assignment function, although sometimes
the assignment function will not make a difference to the deno-
tation. We typically use the letter g to stand for an assignment
function, so instead of

JφKM

we will now write:
JφKM ,g

where g stands for an assignment function. The denotation of
the variable u with respect to model M and assignment function
g , written:

JuKM ,g

is simply whatever g maps u to. We can express this more formally
as follows:

Semantic rule for LPred: Variables
JuKM ,g = g(u)

For example, JxKM ,g1 = g1(x) = Agnetha, and JxKM ,g2 = g2(x) =
Benny (regardless of our choice of model M).

Exercise 14. In this exercise, use the assignment functions g1 and
g2 that we defined above.
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(a) What is g1(y)?

(b) What is JyKM ,g1 (for any model M)?

(c) What is g2(y)?

(d) What is JyKM ,g2 (for any model M)?

From now on, our semantic denotation brackets will have two
superscripts: one for the model, and one for the assignment func-
tion. As a reminder, the model is just a pair consisting of a domain
(which consists of all things that can potentially occur as denota-
tions of predicates, of individuals, of functions, etc.) and an in-
terpretation function (which applies to non-logical constants in
the language). The assignment function applies to variables in the
language, and is not part of the model. In some cases, the choice
of assignment function will not make any difference for the se-
mantic value of the expression. For example, take any model M in
which the constant happy is defined. JhappyKM ,g1 will be the same
as JhappyKM ,g2 for any two assignments g1 and g2, because happy
is a constant. Since it is a non-logical constant, its semantic value
depends on the model, but that is the only thing that it depends
on. In particular, it does not depend on any assignment function.
But the value of the formula

happy(x)

depends on the value that is assigned to x. Whether happy(x) is
true or not depends on how x is interpreted, and this is given by
the assignment function.

Now let us consider the formula ∃x .happy(x). This is true if
we can find one individual to assign x to such that happy(x) is
true. Suppose we are trying to determine whether ∃x .happy(x) is
true with respect to a given model M and an assignment function
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g . We can show that the formula is true if we can find a variant of
g on which the variable x is assigned to some happy individual.

Let us use the expression

g [x↦ Frida]

to describe an assignment function which differs from g , if at all,
only in that g(x) = Frida. That is to say, g [x ↦ Frida] is like g
except that it maps x to Frida while g itself may or may not do
so. If g already happens to map x to Frida, then g [x ↦ Frida] is
exactly the same as g ; otherwise, the two functions differ when it
comes to the value of x, and are otherwise the same.

In general, for any variable u and any individual k,

g [u↦ k]

is an assignment function that is exactly like g with the possible
exception that the value of g(u) is k. Here, k is a symbol of our
meta-language that stands for an individual in the domain, and u
is a meta-variable over variables. We call this a u-VARIANT OF g . If
g already maps u to k then, g [u↦ k] is the same as g . This tech-
nique lets us keep everything the same in g except for the variable
of interest.

Let us consider an example using a particular assignment func-
tion, g1 from above:

g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Benny
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
g1[y ↦Björn] would be as follows:

g1[y ↦Björn] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Björn
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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We changed it so that y maps to Björn and kept everything else
the same.

Exercise 15.

(a) What is g1[z ↦ Björn](x)? (I.e., what does g1[z ↦ Björn] as-
sign to x?)

(b) What is g1[z↦Björn](y)?

(c) What is g1[z↦Björn](z)?

With this terminology, we can give the following official se-
mantics for ∃x .happy(x):

J∃x .happy(x)KM ,g =T iff there is an individual k ∈D such that:

Jhappy(x)KM ,g[x↦k] =T.

What this says is that given a model M and an assignment func-
tion g , the sentence ∃x .happy(x) is true with respect to M and g
if we can modify the assignment function g in such a way that x
has a denotation that makes happy(x) true. In general:

Semantic Rule: Existential quantification
J∃x .φKM ,g =T iff there is an individual k ∈D such that:

JφKM ,g[x↦k] =T

Now, if we wanted to show that the formula ∀x .happy(x) was
true, we would have to consider assignments of x to every element
of the domain, not just one. (To show that it is false is easier; then
you just have to find one unhappy individual.) If happy(x) turns
out to be true no matter what the assignment function maps x
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to, then ∀x .happy(x) is true. Otherwise it is false. So the official
semantics of the universal quantifier is as follows:

Semantic Rule: Universal quantification
J∀v .φKM ,g =T iff for all individuals k ∈D :

JφKM ,g[v↦k] =T

4.2.1 Syntax of LPred

Let us now summarize the syntactic rules of our language. (We
will not list every single name, function, and predicate, but rather
only list a few examples.)

1. Basic Expressions

• Individual constants: a, b, e, f, ...

• Individual variables: xn , yn , and zn for every natural
number n;
(x is an optional abbreviation for x0 which must be
used consistently throughout a formula if it is used at
all; similarly for y and z)

• Function symbols

– Unary: spouseOf, ...

– Binary: tallerOneOf, ...

• Predicate symbols

– Unary: happy, ...

– Binary: loves, ...

2. Terms

• Every individual constant is a term.
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• Every individual variable is a term.

• If π is a function symbol of arity n, and α1, ...,αn are
terms, then π(α1, ...,αn) is a term.3

3. Atomic formulas

• Predication
If π is a predicate of arity n and α1, ...αn is a sequence
of terms, then π(α1, ...αn) is an atomic formula.4

• Identity
If α and β are terms, then α =β is an atomic formula.

4. Negation

• If φ is a formula, then ¬φ is a formula.

5. Binary connectives
If φ is a formula and ψ is a formula, then so are:

• [φ∧ψ] ‘φ and ψ’

• [φ∨ψ] ‘φ or ψ’

• [φ→ψ] ‘if φ then ψ’

• [φ↔ψ] ‘φ if and only if ψ’

6. Quantifiers
If u is a variable and φ is a formula, then both of the follow-
ing are formulas:

3Special cases:

– If π is a unary function symbol and α is a term then π(α) is a term.

– If π is a binary function symbol and α and β are terms then π(α,β) is a
term.

4Special cases:

– If π is a unary predicate and α is a term, then π(α) is a formula.

– If π is a binary predicate and α and β are terms, then π(α,β) is formula.
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• [∀u .φ] ‘for all u: φ’

• [∃u .φ] ‘there exists a u such that φ’

Variables are either FREE or BOUND in a given formula. Whether
a variable is free or bound is defined syntactically as follows:

• In an atomic formula, any variable is free.

• The free variables in φ are also free in ¬φ, and the free vari-
ables in φ and ψ are free in [φ∧ψ], [φ∨ψ], [φ→ψ], and
[φ↔ψ].

• All of the free variables in φ are free in [∀u .φ] and [∃u .φ],
except for u, and every occurrence of u in φ is bound in the
quantified formula.

A formula containing no free variables is called a CLOSED FOR-
MULA. As a special case, this also includes a formula that contains
no variables at all. A formula containing one or more free vari-
ables is called an OPEN FORMULA. A closed formula is also called a
SENTENCE. The distinctions introduced in this paragraph are syn-
tactic, rather than semantic, in the sense that they only talk about
the form of the expressions. However, there are semantic conse-
quences of this distinction, as we will see.5

We want to avoid unnecessary clutter in our representations,
so as mentioned above, we allow brackets to be dropped when it
is independently clear what the scope of a quantifier is, and we
also allow the outermost brackets of an expression to be dropped.
For example, instead of:

[∀x[linguist(x)→ [∃y .admires(x, y)]]]
5An odd feature of predicate logic is that if φ is a closed formula, φ is equiv-

alent to [∀u .φ] as well as to [∃u .φ]. For example, Swedish(a) is equivalent to
[∀x .Swedish(a)] and to [∃x .Swedish(a)]. These formulas are all true (on the
intended interpretation) just in case Agnetha is Swedish. To put it differently, if
it is true that Agnetha is Swedish, then it is also true of every individual, and of
some individual, that Agnetha is Swedish.
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we can write:

∀x[linguist(x)→ ∃y .admires(x, y)]

because it is clear that the scope of the existential quantifier does
not extend any farther to the right than it does. Furthermore,
when reading a formula, you may assume that the scope of a binder
(e.g.∀x or ∃x) extends as far to the right as possible. So, for exam-
ple, ∀x[P(x)∧Q(x)] can be rewritten as ∀x .P(x)∧Q(x), inter-
preted in such a way that the universal quantifier takes scope over
the conjunction, rather than as the conjunction of ∀x .P(x) and
Q(x). (As a heuristic, you may think of the dot as a “wall” that
forms the left edge of a constituent, which continues until you
find an unbalanced right bracket or the end of the expression.)
However, we will typically retain brackets around conjunctions,
disjunctions, and implications.

We retain all of the abbreviatory conventions from above in or-
der to avoid unnecessary clutter in our formulas. Furthermore, we
can drop the dot between two quantificational binders in a row.
Thus instead of:

∀x .∃y .admires(x, y)
we can write:

∀x∃y .admires(x, y)
This convention is specific to our textbook, and there is no sin-
gle standard in the field. In the Lambda Calculator, on its default
setting, dots are always optional.

4.2.2 Semantics of LPred

Now for the semantics of LPred. The semantic value of an expres-
sion is determined relative to two parameters:

1. a model M = ⟨D, I⟩ where D is the set of individuals and I
is a function mapping each non-logical constant of the lan-
guage to an element, subset, or relation over elements in D ,
depending on the nature of the constant;
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2. an assignment function g mapping each individual variable
in LPred to some element in D.

For any given model M and assignment function g , the denota-
tion of a given expression α relative to M and g , written JαKM ,g , is
defined as follows:

1. Basic Expressions

• If α is a non-logical constant, then JαKM ,g = I(α).

• If α is a variable, then JαKM ,g = g(α).

2. Complex terms

• If π is a function of arity n, and α1, ...,αn is a sequence
of n terms, then:

Jπ(α1, ...,αn)KM ,g = JπKM ,g (⟨Jα1KM ,g , ...,JαnKM ,g ⟩)

3. Atomic formulas

• Predication
If π is a predicate of arity n and α1, ...,αn is a sequence
of terms, then: Jπ(α1, ...αn)KM ,g =T if ⟨Jα1KM ,g , ...,JαnKM ⟩ ∈
JπKM ,g , and F otherwise.6

• Identity
If α and β are terms, then

Jα =βKM ,g =T if JαKM ,g = JβKM ,g ,

6Special cases:

– When π is a predicate of arity 1, then:

Jπ(α)K =T if JαKM ,g
∈ JπKM ,g and F otherwise.

– When π is a function of arity 2, then:

Jπ(α,β)K =T if ⟨JαKM ,g ,JβKM ,g
⟩ ∈ JπKM ,g and F otherwise.
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and F otherwise.

4. Negation

• J¬φKM ,g =T if JφKM ,g = F, and F otherwise.

5. Binary Connectives

• Jφ∧ψKM ,g = T if JφKM ,g = T and JψKM ,g = T, and F
otherwise.

• Jφ∨ψKM ,g =T if JφKM ,g =T or JψKM ,g =T, and F oth-
erwise.

• (Semantic rules for→ and↔were left as exercises.)

6. Quantification

• J∀v .φKM ,g =T if for all individuals k ∈D :

JφKM ,g[v↦k] =T

and F otherwise.

• J∃v .φKM ,g =T if there is an individual k ∈D such that:

JφKM ,g[v↦k] =T

and F otherwise.

The choice of assignment function doesn’t always make a dif-
ference for the interpretation of an expression. It only makes a
difference when the formula contains free variables. For example,
in the formula

happy(x)
the variable x is not bound by any quantifier (so it is a free vari-
able). So the semantic value of this formula relative to M and g
depends on what g assigns to x. In contrast, a closed formula such
as ∀x .happy(x) has the same value relative to every assignment
function.
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One important feature of the semantics for quantifiers and
variables in first-order logic using assignment functions is that it
scales up to formulas with multiple quantifiers. Recall the quan-
tifier scope ambiguity in Every linguist admires a philosopher that
we discussed at the beginning of the section. That sentence was
said to have two readings, which can be represented as follows:

∀x[linguist(x)→ ∃y[philosopher(y)∧admires(x, y)]]

∃y[philosopher(y)∧∀x[linguist(x)→ admires(x, y)]]
We will spare you a step-by-step computation of the semantic value
for these sentences in a given model. We will just point out that in
order to verify the first kind of sentence, with a universal quanti-
fier outscoping an existential quantifier, one would consider mod-
ifications of the input assignment for every member of the do-
main, and within that, try to find modifications of the modified
assignment for some element of the domain making the existen-
tial statement true. To verify the second kind of sentence, one
would try to find a single modification of the input assignment for
the outer quantifier (the existential quantifier), such that modifi-
cations of that modified assignment for every member of the do-
main verify the embedded universal statement. This procedure
will work for indefinitely many quantifiers.

Exercise 16. Consider the following formulas.

(a) [happy(m)∧happy(m)]

(b) happy(k)

(c) happy(m,m)

(d) ¬¬happy(n)

(e) ∀x .happy(x)

(f) ∀x .happy(y)

(g) ∃x . loves(x, x)

(h) ∃x .∃z . loves(x, z)

(i) ∃x . loves(x, z)

(j) ∃x .happy(m)
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Questions:

(i) Which of the above are well-formed formulas of LPred?

(ii) Of the ones that are well formed in LPred, which have free
variables in them? (In other words, which of them are open
formulas?)

Recommended: Express your answer in the form of a table, with
one column for each question.

Exercise 17. Consider the following model M f = ⟨D, I f ⟩, where ev-
erybody is happy:

I f (happy) = {Benny,Björn,Agnetha}

Assume that gBenny = g1[x↦Benny] in the problems below.

(a) What is JxKM f ,gBenny ? Apply the LPred semantic interpretation
rule for variables.

(b) What is JhappyKM f ,gBenny ? Apply the relevant LPred semantic in-
terpretation rule.

(c) Which semantic interpretation rule do you need to use in or-
der to put the denotations of happy and x together, and com-
pute the denotation of happy(x)?

(d) Using the rule you identified in your answer to the previous
question, explain carefully why Jhappy(x)KM f ,gBenny =T.
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Exercise 18. Consider the following four assignment functions.

gae = [ x → Abelard
y → Eloise

] gea = [ x → Eloise
y → Abelard

]

gee = [ x → Eloise
y → Eloise

] gaa = [ x → Abelard
y → Abelard

]

For each of the following expressions, give the semantic value of
the expression relative to the model M defined in Exercise 6 and
each of the four assignment functions, using the syntax and se-
mantics of LPred. In other words, say for each expression α what
JαKM ,g is, for each given assignment function g .

Give your answer in the form of a table, with columns labelled
gae , gea , gee , and gaa .

(a) x

(b) y

(c) a

(d) spouseOf(x)

(e) female(x)

(f) [female(x)∧ scholar(x)]

(g) [female(x)→ scholar(x)]

(h) teacher(x, y)

(i) ∃y .teacher(x, y)

(j) ∃x∃y .teacher(x, y)

(k) teacher(a, y)

(l) ∃y .teacher(a, y)
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(m) loves(x,spouseOf(x))

(n) ∀x . loves(x,spouseOf(x))

(o) loves(x, y)

(p) ∀x . loves(x, y)

(q) ∃y∀x . loves(x, y)

(r) teacher(x, y)→male(x)

(s) ∀y[teacher(x, y)→male(x)]

(t) ∀x∀y[teacher(x, y)→male(x)]

Exercise 19. Let g be defined such that x ↦Frida, y ↦Benny, and
z ↦Björn, and suppose that in M2, everybody loves themselves
and nobody loves anybody else, and the binary predicate loves de-
notes this love relation. Assume that f denotes Frida.

(a) Calculate:

(i) JxKM2,g

(ii) JfKM2,g

(iii) JlovesKM2,g

(iv) Jloves(x, f)KM2,g

(b) List all of the value assignments that are exactly like g ex-
cept possibly for the individual assigned to x, and label them
g1...gn .

(c) For each of those value assignments gi in the set {g1, ..., gn},
calculate Jloves(x, f)KM2,gi .
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(d) On the basis of these and the semantic rule for universal
quantification calculate J∀x . loves(x, f)KM2,g and explain your
reasoning.

Exercise 20. If a formula has free variables then it may well be true
with respect to some assignments and false with respect to others.
Give an example of two variable assignments gi and g j such that

Jloves(x, f)KM2,gi ≠ Jloves(x, f)KM2,g j .

Exercise 21. In the Algonquian language Passamaquoddy (spo-
ken in Maine, United States, and New Brunswick, Canada), voice
marking on the verb can affect which scope readings are available
for quantifiers (Bruening, 2001, 2008). For example, (27) and (28)
differ in voice-marking and are true in different circumstances.

(27) Skitap psite ’sakolon-a puhtaya.
man all hold-DIRECT bottles
‘A man is holding all the bottles.’

(28) Psite puhtayak ’sakolon-ukuwal peskuwol skitapiyil.
all bottles hold-INDIRECT one man
‘All of the bottles are held by some man.’

(The morphological glosses have been simplified.)
In (27), the verb is in direct voice, and the agent of the verb

hold corresponds to the bare noun skitap ‘man’, interpreted as
an indefinite (‘a man’). The patient (the thing being held) corre-
sponds to puhtaya ‘bottle’, which is associated with the univer-
sal quantifier psite ‘all’. Speakers of Passamaquoddy judge this
sentence to be true in the situation on the right in Figure 4.1,
but not in the situation on the left. (Images created by Benjamin
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Figure 4.1: Left: A situation where each man is holding a differ-
ent bottle. Right: A situation where one man is holding all of the
bottles. (See exercise 21.)

Bruening for the Scope Fieldwork Project; see http://udel.edu/
~bruening/scopeproject/materials.html.)

In (28), the verb is in indirect voice, and again the agent cor-
responds to an indefinite noun phrase meaning ‘a man’, and the
patient corresponds to ‘all bottles’. This version of the sentence
can be interpreted in two ways, one where the picture on the left
in Figure 4.1 makes it true, and one where the picture on the right
makes it true.

(a) Write out representations in LPred for the two possible scope
interpretations.

(b) Given that the version in direct voice is true only in the situ-
ation on the right, which of the two scope interpretations is
correct for direct voice?

(c) More generally, what does this contrast suggest about how
voice affects scope interpretation in Passamaquoddy?
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5 ∣ Typed lambda calculus

5.1 Introduction

As you may recall from the introduction, this book develops a sys-
tem that assigns truth conditions to sentences in a compositional
manner, with the semantic values of larger expressions built up
from those of the parts of these expressions. Following Frege, we
adopt the idea that semantic composition involves a kind of sat-
uration that can be modeled using functions. Suppose you have
a syntactic phrase consisting of two sub-phrases, such as a sen-
tence made up of a subject and a verb phrase, or a verb phrase
made up of a transitive verb and its object. In order for the se-
mantic values of the sub-phrases to combine via saturation, one
of them must denote a function and the other must denote a po-
tential argument to that function. Currently, we have only a very
limited set of tools for describing functions. In this chapter, we
will expand our range of tools. Doing so will enable us to model
semantic composition in an elegant and general way.

Consider the sentence John loves Mary, which might be trans-
lated into LPred as:

loves(j,m)
Some parts of the sentence John loves Mary can be straightfor-
wardly mapped into expressions in LPred, but others do not map
onto self-contained chunks. For example, we might say that (rel-
ative to a given model) the English name Mary picks out a partic-
ular element of the domain, namely Mary. So it makes sense to
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translate the English name Mary as an individual constant, such
as m, as this is the sort of denotation that individual constants
have. The English verb loves could be thought of as denoting a bi-
nary relation (a set of ordered pairs of individuals in the domain),
the sort of thing denoted by a binary predicate. Let us therefore
assume that loves is a binary predicate and that the verb maps to
it. But what does a verb phrase like loves Mary map onto? Your
intuition as a theorist might tell you that it translates to a formula
with an empty slot:

(1) loves( ,m)

where the first argument of loves is missing. As Frege puts it, the
verb phrase expresses something unsaturated, a function whose
arguments are things that can fill the empty slot. In order to ex-
press this idea formally, we will make use of a device known as an
ABSTRACTION OPERATOR. We will use a variable as a placeholder
in the empty slot, and we will use an abstraction operator, written
as the Greek letter λ (‘lambda’), to bind that variable, creating a
function that will accept a filler for that slot. This device is also
known as LAMBDA ABSTRACTION.

The language of the SIMPLY TYPED LAMBDA CALCULUS, devel-
oped by the logician Alonzo Church, gives us the tools to represent
‘unsaturated meanings’ as functions. Using the λ symbol, we can
ABSTRACT OVER the missing piece. The result looks like this:

(2) λx . loves(x,m)

This expression (read ‘lambda x dot loves x m’) denotes a function
from an individual to a truth value, which yields true if and only
if that individual loves Mary. This is the characteristic function
of the set of all individuals that love Mary. In Chapter 2, we as-
sumed that verb phrases (as well as nouns) denote sets of individ-
uals. Apart from replacing sets by their characteristic functions,
we are making the same assumption here.

A similar problem arises with expressions like Everything. A
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sentence containing everything is always translated as something
of the following form:

∀x . (x)

where is a placeholder for some predicate. For instance, Ev-
erything is temporary could be expressed:

(3) ∀x .temporary(x)

while Everything is permanent would be expressed:

(4) ∀x .permanent(x)

What is constant across these uses is the universal quantification;
only the predicate varies. We can capture this if we can abstract
over the predicate. Suppose that P is a variable over predicates;
then we can abstract over that position using the following expres-
sion:

(5) λP .∀x .P(x)

This expression (read ‘lambda P (dot) for all x, P of x’) denotes a
function that expects a predicate, and returns a truth value that
depends on the input predicate. More specifically, it denotes a
function from a predicate P to a truth value: true if everything
satisfies P , and false otherwise.

Now, so far we have not had any variables over predicates.
In first-order logic, which we have been using so far, variables
only range over individuals. From here on in, we will be using a
HIGHER-ORDER LOGIC. This means we can have variables ranging
over predicates, which can then be abstracted over. It also means
that expressions other than terms can serve as arguments to other
expressions. So the logic in this chapter is different from LPred in
two respects: it contains lambda abstraction, and it is a higher-
order logic.

In this chapter, we will define the syntax and semantics of a
language that includes this lambda operator. We will name the
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language Lλ, after its most important symbol.

5.2 Lambda abstraction

5.2.1 Types

Our languages LProp, L0, and LPred had a rather limited set of syn-
tactic categories: terms, predicates and functions of various ari-
ties, and formulas. In the language Lλ that we present next, we
will have a much richer set of syntactic categories, called TYPES.
Strictly speaking, a type is a syntactic category for an expression
of the logic, but a type also represents the kind of denotation an
expression has, and puts constraints on which other expressions
(if any) the expression can combine with.

The set of types is recursively specified, so they can be of ar-
bitrary complexity and depth, but there are strict rules as to what
counts as a type and what doesn’t. We will start with two BASIC

TYPES:

(6) e

(the type of entities) for individual-denoting expressions (corre-
sponding to TERMS in L0), and

(7) t

(the type of truth values) for formulas.
From now on, we will use the term EXPRESSION for any well-

formed string of any type, and the term FORMULA for any expres-
sion of type t . We will assign types in such a way that everything
that was a formula in propositional or predicate logic will con-
tinue to be a formula.

From these types we will build up FUNCTION TYPES such as:

(8) ⟨e, t⟩
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for expressions denoting functions from individuals to truth val-
ues. The set of types is defined recursively as follows, where σ

‘sigma’ and τ ‘tau’ are not themselves types but rather are meta-
variables that stand for arbitrary types:

• e is a type

• t is a type

• If σ is a type and τ is a type, then ⟨σ,τ⟩ is a type.

• Nothing else is a type.

For example, ⟨e, t⟩ is a type, since both e (our σ) and t (our τ) are
types. Note that σ and τ could in principle be instantiated by the
same actual type; for example, ⟨e,e⟩ is a type, since σ and τ don’t
have to be distinct. Also, since ⟨e, t⟩ is a type, and e is a type of
course, it follows that ⟨e,⟨e, t⟩⟩ is a type. And so on. The set of
types is infinite.

These types are syntactic categories of expressions of our log-
ical language. In any given model, these expressions denote var-
ious kinds of objects, and in this way types are indirectly associ-
ated with the objects that these expressions denote. A model as-
sociates each type with a different DOMAIN, the set of possible de-
notations for expressions of that type. For any type τ, we use Dτ to
signify the set of possible denotations for an expression of type τ.
An expression of type e denotes an individual; De is the set of in-
dividuals. So we say indirectly that e is the type of individuals. An
expression of type t is a formula, so its denotation must be either
Tor F; D t = {1,0}. An expression of type ⟨e, t⟩ denotes a function
from individuals to truth values. D⟨e,t⟩ is the set of functions with
domain De and codomain D t ; that is, functions that take as in-
put an individual, and give a truth value as output. An expression
of type ⟨e,⟨e, t⟩⟩ denotes a function which takes an individual as
its input and returns a function from individuals to truth values.
An expression of type ⟨⟨e, t⟩,e⟩ denotes a function which takes a
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function from individuals to truth values as its input and returns
an individual. And so forth.

Although the set of types is infinite, there are limits: Not ev-
erything is a type. For example, ⟨e⟩ is not a type according to this
system (though some authors write ⟨e⟩ for e); according to our
definition, angle brackets are only introduced for function types.

The system used in this book and in most semantic research
also lacks types corresponding to sets and binary relations, the
sorts of things that the unary and binary predicates of predicate
logic denote. In this language, an expression cannot denote a set,
because there is no type for that. There is, however, the type ⟨e, t⟩,
which corresponds to the characteristic function of a set (a func-
tion that takes an individual, and returns true or false depending
on whether that individual is in the set). From the characteristic
function of a set, one can figure out what the members of the set
are (it is the characteristic set of that function), so unary predi-
cates can be replaced by expressions of type ⟨e, t⟩ with no loss of
information.

Similarly, an expression cannot denote a binary relation, as
there is no type for that. But we do have the type ⟨e,⟨e, t⟩⟩, which
can encode a binary relation, by using a method known as CURRY-
ING.1 Currying serves to change a single function taking multiple
arguments into multiple functions each taking a single argument.
For example, a binary relation R is a set of pairs of individuals. The
characteristic function of this set is a function that applies to pairs
of individuals and returns a truth value. From this characteristic
function, LEFT-TO-RIGHT CURRYING produces a function f such
that [ f (x)](y) = T if and only if ⟨x, y⟩ ∈ R (where [ f (x)](y) de-

1This procedure is named after the logician Haskell Curry. It is also called
‘Schönfinkelization”, after the logician Moses Schönfinkel, on whose work Curry
built. See Heim & Kratzer (1998) p. 41, fn. 13. Hindley & Seldin (2008, p. 3)
write, “Curry always insisted that he got the idea of using [curried functions]
from [Schönfinkel 1924 (see Curry & Feys 1958, pp. 8, 10)], but most workers
seem to prefer to pronounce ‘currying’ rather than ‘schönfinkeling’. The idea
also appeared in 1893 in [Frege 1983, Vol. 1, Section 4].”
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notes the result of first applying f to x, and then applying f (x) to
y). Analogously, right-to-left currying produces a function f such
that [ f (x)](y) =T if and only if ⟨y, x⟩ ∈R.

For example, say we want to turn the following binary relation
over the set of ABBA members into a function of type ⟨e,⟨e, t⟩⟩:

(9) {⟨Agnetha,Frida⟩,⟨Björn,Benny⟩,
⟨Björn,Björn⟩,⟨Frida,Björn⟩}

The characteristic function of this relation, call it f , is shown be-
low. Applied to any pair of individuals, it returns a truth value: T
if that pair is in the relation, F otherwise.

(10) f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨Agnetha,Agnetha⟩ → F
⟨Agnetha,Benny⟩ → F
⟨Agnetha,Björn⟩ → F
⟨Agnetha,Frida⟩ → T
⟨Benny,Agnetha⟩ → F
⟨Benny,Benny⟩ → F
⟨Benny,Björn⟩ → F
⟨Benny,Frida⟩ → F
⟨Björn,Agnetha⟩ → F
⟨Björn,Benny⟩ → T
⟨Björn,Björn⟩ → T
⟨Björn,Frida⟩ → F
⟨Frida,Agnetha⟩ → F
⟨Frida,Benny⟩ → F
⟨Frida,Björn⟩ → T
⟨Frida,Frida⟩ → F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Left-to-right currying turns f into the function we call f→:
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(11) f→ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Benny →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Björn →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → T
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Frida →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Right-to-left currying turns f into the function we call f←:

(12) f← =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Benny →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Björn →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Frida →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → T
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Both f→ and f← are of type ⟨e,⟨e, t⟩⟩. Applied to a given indi-
vidual x, each one returns another function, which in turns maps
individuals y to truth values: f→ returns T iff x stands in the orig-
inal relation to y , and f← returns T iff y stands in the original re-
lation to x. For example, there are two ordered pairs in the rela-
tion whose second element is Björn, namely, ⟨ Björn, Björn ⟩ and ⟨
Frida, Björn ⟩ (we look at the second element because the relation
is right-to-left curried.) Accordingly, when we apply f← to Björn,
the result is a function that maps Björn to T Frida to T and the
others to F

(13) f←(Björn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
As another example, when f← is applied to Agnetha, it returns

a function that maps everything to F because there is no ordered
pair in the relation whose second element is Agnetha. And so on.

As it turns out, right-to-left currying is precisely what we need
in order to give a compositional analysis of sentences in natural
languages containing transitive verbs. (We use right-to-left cur-
rying because of a mismatch: in bottom-up syntactic derivations,
the first argument with which a transitive verb merges is its ob-
ject, and this order will be mirrored in the compositional seman-
tics. But because subjects occur to the left of objects in many lan-
guages, it is customary to think of binary relations as relating sub-
jects to objects in that order. That is, the first element in the pair of
a binary relation is thought of as the subject, and the second ele-
ment is thought of as the object. If this was the other way around,
we would use left-to-right currying instead.) In the next chapter,
we will characterize transitive verbs as denoting such curried rela-
tions – functions which, when given an individual, return another
function. Rather than translating the verb loves as the binary pred-
icate loves, we will translate it as a function that applies to its ob-
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ject (say, Björn, in Agnetha loves Björn) to return a new function,
which then may apply to the subject (say, Agnetha). That way, ev-
ery part of the sentence is assigned a denotation, including the
verb phrase (loves Björn), and the composition proceeds through
the successive application of functions.

To translate the verb loves, we can use a simple expression of
type ⟨e,⟨e, t⟩⟩ like

(14) loves

where the initial lower case letter indicates that it is a function
symbol rather than a relation symbol. Then

(15) loves(b)

will serve as the translation for the verb phrase loves Björn, and

(16) loves(b)(a)

will serve as the translation for Agnetha loves Björn. Note that in
loves(b)(a), the subexpression loves(b) forms a unit. We have
loves(b)(a) rather than loves(a)(b) because the verb combines
first with the object Björn and then with the subject Agnetha. But
as we generally prefer to read the subject before the object, and in
order to reduce parenthesis clutter, we will introduce the follow-
ing notational convention: instead of loves(b)(a), we will write as
a shorthand:

(17) loves(a,b)

We will stick to this RELATIONAL STYLE (as opposed to the FUNC-
TIONAL STYLE) throughout the book as much as possible. Thus
instead of the functional style (18a), with a two sets of parens, we
will represent the denotation of a transitive verb in lambda calcu-
lus in the relational style as in (18b), with just one set of parens:

(18) a. λy .λx . loves(y)(x)
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b. λy .λx . loves(x, y)

The expression in (18b) denotes the result of right-to-left currying
the binary relation denoted by the binary predicate loves in pred-
icate logic. Using the relational style helps bring out visually how
many arguments the verb expects to combine with, and is more
similar to how verbal denotations are commonly represented fol-
lowing the style of Heim & Kratzer (1998); the denotation of the
verb loves in that style would be represented as ‘λy .λx . x loves y ’,
with a blend of English and lambda calculus.

5.2.2 Syntax and semantics

The introduction of an infinite set of syntactic categories sets the
stage for the introduction of the LAMBDA OPERATOR (orλ-operator),
also known as an ABSTRACTION OPERATOR. The lambda operator
allows us to describe a wide range of functions. For example:

(19) λx . loves(m, x)

denotes the characteristic function of the set of individuals that
Mary loves, while

(20) λx . loves(x,m)

denotes the characteristic function of the set of individuals that
love Mary. You can think of the λ-operator analogously to predi-
cate notation for building sets. λx . loves(m, x) denotes the char-
acteristic function of the set {x ∣ Mary loves x}, that is, of the set
of individuals that Mary loves. (It is common not to distinguish
between sets and their characteristic functions. So we will often
also say slightly imprecise things like “λx . loves(m, x) denotes the
set of individuals that Mary loves.”)

The lambda expressions in the previous paragraph are of type
⟨e, t⟩, because the input is an individual (something in De ) and
the output is a truth value (something in D t ). In general, if φ is a
formula (type t ), and x is a variable of type e, then λx .φwill be an
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expression of type ⟨e, t⟩. But the input and the output can be any
type whatsoever. Here is a lambda expression of type ⟨e,e⟩:

(21) λx .spouseOf(loverOf(x))

This function takes as input an individual x and returns as output
another individual, the spouse of x’s lover.

The syntax rule that introduces lambda expressions into the
language thus allows for any possible type:

Syntax Rule: Lambda abstraction
If α is an expression of type τ and u is a variable of type σ then
[λu .α] is an expression of type ⟨σ,τ⟩.
(We will often drop the outer square brackets when it does not
result in confusion.)

In a lambda expression of the form described in this rule, we call
σ and τ the INPUT TYPE and OUTPUT TYPE.

The semantics of lambda expressions is defined as follows:

Semantic Rule: Lambda abstraction
If α is an expression of type τ and u a variable of type σ then for
any assignment g , Jλu .αKM ,g is that function f from Dσ into Dτ

such that for all objects o in Dσ, f (o) = JαKM ,g[u↦o].

For example, λx .happy(x) is of the form λu .α where u (i.e., x)
is of type e, and α (i.e., happy(x)) is of type t . So it denotes the
function f from De to D t such that for all objects o in De , f (o) is

equal to Jhappy(x)KM ,g[x↦o]. For any object o, f (o) will return T
(True) if o is happy, and F (False) if not. So λx .happy(x) denotes
the characteristic function of the set of happy individuals.

To give the full picture of the indirect interpretation theory,
the syntactic constituent “loves Björn” will be translated to the
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expression λx . loves(x,b). We will symbolize the translation re-
lation with the symbol↝ (pronounced “translates to” or “is trans-
lated as”). The J⋅KM ,g denotation function maps this lambda ex-
pression to the characteristic function of the set of individuals
who love Björn in M . If that characteristic function is given the
individual Agnetha as an input, the output is a truth value: T if
Agnetha loves Björn in M ; F if not.

If this seems overwhelming, stay calm; it may start to sink in
after you get some practice with beta reduction, which we turn to
next.

5.2.3 Application and beta reduction

The functions resulting from abstraction behave just like the func-
tions we are already familiar with. As in L0, we indicate the ar-
guments of a function using parentheses. This is called APPLICA-
TION. Ifπ is an expression denoting a function, andα is an expres-
sion whose type is the input type of π, then π(α) denotes the re-
sult of applying π to α, and its type is the output type of π. For ex-
ample, [λx .happy(x)](a) denotes the result of applying the func-
tion denoted by [λx .happy(x)] to the semantic value of a. This
principle also applies to syntactically complex function-denoting
terms formed by lambda abstraction. Thus

(22) [λx . loves(x,b)](a)

denotes the result of applying the function ‘loves Björn’ to Ag-
netha.

Here is the syntax rule that introduces function application
terms into the language:

Syntax Rule: Function Application
For any types σ and τ, if α is an expression of type ⟨σ,τ⟩ and β is
an expression of type σ then α(β) is an expression of type τ.
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The semantics of function application is defined as follows:

Semantic Rule: Function application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of type
σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g ).

The expression we have just seen is provably equivalent to the
simpler:

(23) loves(a,b)

where the λ-binder, the square brackets, and the variable have
been removed, and we have kept just the part after the dot, with
the modification that the argument of the function is substituted
for all instances of the variable. This kind of simplification is known
as BETA REDUCTION (other names include BETA CONVERSION and
LAMBDA CONVERSION).

Using beta reduction, an expression of the form:

[λx . ... x ...](α)
can be simplified to

... α ...

The following pairs of expressions are equivalent; in each case, the
second is the beta-reduced version of the first.

(24) a. [λx .smiled(x)](a)
b. smiled(a)

(25) a. [λx .[smiled(x)∧happy(x)]](a)
b. [smiled(a)∧happy(a)]

(26) a. [λx .[smiled(x)∧happy(y)]](a)
b. [smiled(a)∧happy(y)]

In a lambda expression of the formλx .φ, theφpart (the scope
of the lambda expression) describes the value of the function given
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an argument, so it can be called the VALUE DESCRIPTION (or BODY).
For example, the value description in the expression

(27) λx . loves(x,bj)

is

(28) loves(x,bj).

Exercise 1. Identify the value description in the following lambda
expressions:

1. λx .happy(x)

2. λx . x

3. λy .λx .[loves(x, y)∨ loves(y, x)]

4. λz .λy .λx .between(x, y, z)

In general, the result of applying a function described by a
lambda expression to an argument can be described as taking the
value description and replacing all free occurrences of the lambda-
bound variable with the argument. By ‘free occurrences’, we mean
occurrences that are not bound by another variable binder (a lambda
operator or a quantifier). The official definition of beta-reduction
is as follows. Here we write x for a variable of any type, α for an
expression of the type of x, φ for an expression of any type, and
φ[x ∶= α] for the result of replacing with α all free occurrences of
x in φ:

Beta reduction: [λx .φ](α) can be reduced to φ[x ∶= α] provided
that α does not contain any free variables that occur in φ.
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If another variable binder is present in the value description
and binds the very same variable that is bound by the lambda op-
erator in question, then occurrences of the variable that are in the
scope of that other variable binder are no longer bound by the
lambda operator. So the following two formulas are equivalent:

(29) a. [λx .[smiled(x)∧∃x .happy(x)]](a)
b. [smiled(a)∧∃x .happy(x)]

The occurrence of the variable x inside the scope of the existen-
tial quantifier is bound by that quantifier and not by the lambda
operator, so replacing it with a would not result in an equivalent
expression.

To avoid confusion, as a matter of practice, it is best to avoid
letting the same variable be bound by more than one binder. But
if you find yourself in such a situation, you can remedy it using
the rule of ALPHA CONVERSION. This is a re-lettering rule: it allows
one to replace bound variables by other ones under certain con-
ditions without a change in denotation. For instance, ∀x .P(x)
is equivalent to ∀y .P(y), where we have ‘re-lettered’ all occur-
rences of x as y . The same holds for lambda-bound variables as
well: λx .P(x) is equivalent to λy .P(y). Alpha conversion also
allows us to convert

(30) λx . loves(x, y)

into

(31) λz . loves(z, y)

Here we replaced x with z, which we could do because z did not
already occur free in the variable description in (30). We could
not have picked y , as that would have produced a VARIABLE COL-
LISION, also known as an ACCIDENTAL CAPTURE. If you replace
the lambda-bound variable with one that already occurs free in
the body of the lambda expression (such as y in this example),
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the lambda operator will come to bind that variable occurrence
whereas it did not before, so that would change the meaning. But
for any variables u and v , as long as v does not occur free in φ,
λu .φ can be written equivalently as λv .φ′, where φ′ is a version
of φ with all free instances of u replaced by v .

In the context of beta-reduction, alpha conversion can be es-
pecially useful when the argument contains a free variable, or is a
variable itself. For example, consider:

(32) [λy .λx . loves(x, y)](x)

If we just substitute x in for y , we get:

(33) λx . loves(x, x)

The rule of beta-reduction does not allow this, because it contains
the proviso, “provided thatα [the argument] does not contain any
free variables that occur in φ [the value description].” In this case,
the argument (here, x) contains a free variable that occurs in the
value description (here, λx . loves(x, y)). And indeed, (33) is not
equivalent to the original expression (32). The expression (33) de-
notes the set of self-lovers, while the expression (32) denotes the
set of those who love whomever x picks out. Through overly en-
thusiastic substitution of y for x, the variable y accidentally be-
came bound by the inner lambda operator. But the inner lambda
expression could have involved any variable. It didn’t have to be
x. For example, it could have been z. Using alpha conversion, we
reletter x as z in (32) and get the following:

(34) [λy .λz . loves(z, y)](x)

This expression has exactly the same denotation as (32). If we sub-
stitute x for y by performing beta reduction on (34), then we get
the right result: an expression that has the same denotation as (32)
(and (34)), but that cannot be simplified any further.

(35) λz . loves(z, x)
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Whereas our former attempt in (33) denotes the set of individuals
who love themselves, this denotes the set of individuals who love
whomever x picks out.

When doing beta reduction on arguments that contain free
variables which also occur in the value description, as in (32), we
recommend first using alpha conversion to ‘re-letter’ the bound
variable as in (34), before carrying out beta reduction as usual. In
the Lambda Calculator, the software accompanying this book that
can be used as a tool in solving the exercises, this re-lettering pro-
cedure is enforced as a matter of practice.2

2A third rule, ETA REDUCTION, allows us to rewrite a lambda term of the
shape λx .[φ(x)] as just φ, and vice versa. For example, this rule ensures that
λx .smiled(x) andλy .smiled(y) are equivalent to each other and to smiled. Two
other examples: λy[λx . loves(y)(x)] is equivalent to λy . loves(y), which in
turn is equivalent to loves; and λP .[λx .¬P(x)] is equivalent to λP .¬P . This
can be another handy way of simplifying representations. Like the other rules,
it comes with a proviso regarding free variables: φ can be any expression ex-
cept it must not contain any free occurrences of x. For example, λx . loves(x)(x)
(which denotes the set of self-lovers) cannot be eta-reduced to loves(x), which
denotes the set of x-lovers rather than self-lovers. If it is not clear why loves(x)
has this denotation, it might help to see that it can be obtained via eta reduction
from λy . loves(x)(y), which also denotes the set of x-lovers. (Remember that
curried predicates that translate to transitive verbs take their object before their
subject.)

Eta reduction is needed in order to derive equivalences that one would not
have been able to derive with just alpha and beta reduction. For example, the
expressions λx.[(λP.P)(smiled)](x) and smiled have the same denotation in
every model, but we cannot reduce the first to the second without using eta-
reduction.

One can show that these three rules never change the denotation or the type
of a lambda expression and that they always give the same result no matter in
which order they are applied to a complex lambda term. And in the simply typed
lambda calculus, one can show that these rules will always terminate, i.e. no
matter how complex the initial expression, it is always possible to come to a
point where none of these rules can be applied.
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5.2.4 Some applications

Our new and improved representation language, with its capacity
for abstraction and its infinitely many types, can express a wide
range of potential denotations for natural language expressions.
Take for example the prefix non-, as in non-smoker. A non-smoker
is someone who is not in the set of smokers. If smoker denotes the
set of people who smoke and translates to this:

(36) λx .smokes(x)

Then non-smoker should denote the set of people who don’t smoke,
and it should translate to this:

(37) λx .¬smokes(x)

On this analysis, a non-P is a member of the set denoted byλx .¬P(x).
So the denotation of non- can be thought of as a function that
takes as its argument a predicate (say, P ) and then returns a new
predicate which holds of an individual iff the individual does not
satisfy the input predicate P :

(38) λP .[λx .¬P(x)]

If we apply this function to λx .smokes(x), the result is equivalent
to λx .¬smokes(x). This correctly captures the fact that a non-
smoker doesn’t smoke. As the prefix non- applies to a predicate,
rather than an individual, it can be said to denote a HIGHER-ORDER

FUNCTION, that is, a function that applies to other functions. By
the same token, non- is a HIGHER-ORDER EXPRESSION.

In the beginning of this chapter, we motivated the use of lambda
calculus on the basis of its ability to capture the idea of a tem-
plate with a slot to be filled, but its ability to represent higher-
order functions is another important virtue of this formalism as
a way of representing natural language. For example, in Chapter
4, we mentioned that the following sentences can be expressed as
a single formula in higher-order logic but not in first-order logic:
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(39) a. Napoleon had all the properties of a good general.
b. No two distinct objects have the same properties.

Here are two translations of these sentences into higher-order logic:

(40) ∀P .[[∃x .good(x)∧general(x)∧P(x)]→ P(napoleon)]
(41) ¬[∃x∃y .[¬(x = y)∧ [∀P .P(x)↔ P(y)]]]

In these formulas, P is not a predicate but a variable over predi-
cates (otherwise, it could not be bound by the universal quanti-
fier). The type of this variable is ⟨e, t⟩. In the first-order logic we
have encountered in chapter 3, all variables range over individu-
als; in other words, the types of all first-order variables is e.

Other higher-order expressions that we can treat using our new
language include quantifiers like every cellist and determiners like
every. Recall that intuitively, every expresses the subset relation
between two sets. To say Every cellist smokes is to say that the set of
cellists is a subset of the set of individuals that smoke. Let P and Q
be variables ranging over the characteristic functions of sets (type
⟨e, t⟩). The denotation of every can be represented like this:

(42) λP .λQ .∀x .P(x)→Q(x)

This expression denotes a function that takes a predicate (call it
P ), and returns a function that takes another predicate (call it Q),
and returns T(True) if and only if every P is a Q.

The denotation of every cellist would be the result of applying
this function to the denotation of cellist. This means that cellist
must denote a function from individuals to truth values. This sug-
gests that cellist is translated as follows:

(43) λy .cellist(y)

Then every cellist will be translated as:
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(44) [λP .λQ .∀x .P(x)→Q(x)](λy .cellist(y))

λP .λQ .∀x .P(x)→Q(x)

every

λy .cellist(y)

cellist

The translation at the top can be simplified via two beta reduc-
tion. In a first step, we remove λP and correspondingly replace P
in the value description by λy.cellist(y). This gives us:

(45) λQ .∀x .[λy .cellist(y)](x)→Q(x)

In a second step, we applyλy .cellist(y) to x and get cellist(x) This
happens within the bigger expression, so we end up with:

(46) λQ .∀x .cellist(x)→Q(x)

Thus the denotation of every, applied to the denotation of cellist, is
a function that is still hungry for another unary predicate. Feeding
it λz .smokes(z) produces a formula that denotes a truth value:

(47) [λQ .∀x .cellist(x)→Q(x)](λz .smokes(z))

This formula, too, can be simplified via two beta reductions. In
a first step, we remove λQ and correspondingly replace Q in the
value description by λy.smokes(y). This gives us:

(48) [∀x .cellist(x)→ [λz .smokes(z)](x)]

In a second step, we apply λz .smokes(z) to x and get smokes(x).
So we end up with:

(49) ∀x .cellist(x)→ smokes(x)

From here on in, we will not spell out these kinds of beta reduc-
tions explicitly.
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Exercise 2. Download the Lambda Calculator from http://
lambdacalculator.com, and install it on your computer. (It
works with Mac, Windows and Linux operating systems.) Then
open the ‘Scratch Pad’ and verify for yourself that the two reduc-
tions just given work as described.

5.3 Summary

5.3.1 Syntax of Lλ

Let us now summarize our new logic, Lλ, which is a version of the
SIMPLY TYPED LAMBDA CALCULUS. The TYPES are defined recur-
sively as follows:

• e is a type

• t is a type

• If σ is a type and τ is a type, then ⟨σ,τ⟩ is a type.

• Nothing else is a type.

A FORMULA is an expression of type t . This means that all those ex-
pressions that were already well-formed formulas in our old log-
ics LProp and L0 (e.g. atomic formulas, conjunctions, disjunctions,
quantified statements, etc.) are expressions of type t .

For every type, there is a set of constants of that type, and an
infinite set of variables of that type. Each variable bears an index,
indicated with a subscripted integer.

1. Basic Expressions
For every type τ, there is:

• a possibly empty set of constants Conτ
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• an infinite set of variables Varτ, each bearing a natu-
ral number as an index, one for each natural number.
(The index 0 can be suppressed, so x is an abbrevi-
ation of x0. Abbreviated and non-abbreviated forms
should not occur in the same formula, lest confusion
arise.)

In this language, since we can have constants of any type,
including the whole range of functional types, we will drop
the convention that constants denoting functions end in Of.
For instance, we could have a constant non ∈ Con⟨⟨e,t⟩,⟨e,t⟩⟩
that denotes the function we associated with the English
prefix non- above. The constant loves above is in Con⟨e,⟨e,t⟩⟩.

Variables of the form xi , yi or zi , where i is an integer, are
variables of type e. Variables of the form Pi or Qi are of type
⟨e, t⟩. Variables of the form Ri are of type ⟨e,⟨e, t⟩⟩. Outside
of these conventions, we sometimes indicate the type of a
variable by means of an additional subscript.

2. Application (cf. ‘Complex Terms’ in LPred)
For any typesσ and τ, ifα is an expression of type ⟨σ,τ⟩ and
β is an expression of type σ then [α(β)] is an expression of
type τ. (We will often drop the square brackets when it does
not result in confusion.)

3. Identity
If α and β are expressions of the same type, then α = β is a
formula (an expression of type t).

4. Negation
If φ is a formula, then so is ¬φ.

5. Binary Connectives
Ifφ andψ are formulas, then so are [φ∧ψ],[φ∨ψ],[φ→ψ],
and [φ↔ψ].
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(This means that we cannot apply the connectives to ex-
pressions of any type other than t , nor can we use them to
produce any such expressions.)

6. Quantification
Ifφ is a formula and u is a variable of any type, then [∀u .φ]
and [∃u .φ] are formulas.

7. Lambda abstraction (new!)
If α is an expression of type τ and u is a variable of type σ
then [λu .α] is an expression of type ⟨σ,τ⟩.

Recall that when reading a formula, you may assume that the
scope of a binder (∀, ∃, or λ) extends as far to the right as possible.
So, for example, ∀x .[P(x)∧Q(x)] can be rewritten as ∀x .P(x)∧
Q(x). However, we will typically retain brackets in these cases.
Similarly to how we can drop the dot between two quantifica-
tional binders, we can also drop the dot between two lambdas in
a row, so we can write, e.g. λxλy .Admires(x, y). (The order of the
lambdas still matters: this function is not the same asλyλx .Admires(x, y).)
We will, however, always retain the final dot in a sequence of lambda
binders in order to show that the end of the argument list has
been reached, e.g. λxλy .∃z .Gave(x, y, z). Once again, these dot-
related conventions are specific to our textbook, and there is no
single standard in the field.

To further reduce clutter, we will add the following abbrevia-
tory convention: Square brackets that are immediately embedded
inside parentheses can be dropped. This way, we can for example
write π(λx .happy(x)) rather than π([λx .happy(x)]).

Finally, we define some equivalences between ‘relational style’
and ‘functional style’ formulas. For example,

(50) loves(x, y)

is defined to be equivalent to loves(y)(x). In general, if π denotes
an n-place right-to-left curried relation, then
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(51) π(α1)(α2)...(αn)

can be re-written as

(52) π(αn ,αn−1, ...,α1)

Exercise 3. Consider the following expressions, assuming the fol-
lowing abbreviations:

• x is v0,e (meaning that x is variable number 0 of type e)

• y is v1,e

• P is v0,⟨e,t⟩, Q is v1,⟨e,t⟩, and X is v2,⟨e,t⟩

• R is v0,⟨e×e,t⟩

• a is c0,e and b is c1,e

1. [λx .P(x)](a)

2. [λx .P(x)(a)]

3. [λx .R(y,a)]

4. [λx .R(y,a)](b)

5. [λx .R(x,a)](b)

6. [λxλy .R(x, y)](b)

7. [λxλy .R(x, y)](b)(a)

8. [λx .[λy .R(x, y)](b)](a)

9. [λX .∃x .[P(x)∧X (x)]](λy .R(a, y))

10. [λX .∃x .[P(x)∧X (x)]](λx .R(a, x))

11. [λX .∃x .[P(x)∧X (x)]](λy .R(y, x))
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12. [λX .∃x .[P(x)∧X (x)]](Q)

13. [λX .∃x .[P(x)∧X (x)]](X )

14. [λX .∃x .[P(x)∧X (x)](λx .Q(x))]

15. [λyλx .R(y, x)](a)

For each of the above, answer the following questions:

(a) Is it a well-formed expression of Lλ (given both the official
syntax and our abbreviatory conventions) and if yes, what is
its type?

(b) If the formula is well-formed, give a completely beta-reduced
expression which is equivalent to it. Use alpha-conversion
(re-lettering of bound variables) if necessary to avoid variable
clash.

You can check your answers using the Lambda Calculator.

Exercise 4. Identify the type of each of the following. Assume that
man and mortal are constants of type ⟨e, t⟩.

1. λy . y

2. λx .P(x)

3. P

4. a

5. x

6. P(x)
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7. [λx .P(x)](a)

8. P(a)

9. R(x, y)

10. λx .R(x,a)

11. λyλx .R(y, x)

12. [λyλx .R(y, x)](a)

13. [λx .R(y,a)](b)

14. R(a,b)

15. λx .[P(x)∧Q(x)]

16. [λx .P(x)∧Q(x)](a)

17. λxλy .[R(y)(a)∧Q(x)]

18. λP .P

19. λP .P(a)

20. ∃x .P(x)

21. λP .∃x .P(x)

22. [λP .∃x .P(x)](man)

23. ∃x .man(x)

24. λP .∀x .P(x)

25. [λP .∀x .P(x)](mortal)

26. ¬mortal(x)
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27. λx .¬mortal(x)

28. λPλx .¬P(x)

29. [λPλx .¬P(x)](mortal)

30. λx .¬mortal(a)

31. [λx .¬mortal(x)](a)

32. ¬mortal(a)

33. λQ .∀x .[man(x)→Q(x)]

34. [λQ .∀x .[man(x)→Q(x)]](mortal)

35. λPλQ .∀x .[P(x)→Q(x)]

36. [λPλQ .∀x[P(x)→Q(x)]](man)

37. [λPλQ .∀x[P(x)→Q(x)]](man)(mortal)

38. [λQ .∀x[man(x)→Q(x)]](λx[mortal(x)])

39. [λPλx .¬P(x)](mortal)

40. [λPλx .¬P(x)](λx .mortal(x))

You can check your answers using the Lambda Calculator.

Exercise 5. Where possible, apply beta-reduction to give a more
concise version of each of the following. If the expression is fully
reduced, just give the original expression.

1. [λx . x](a)

2. [λP .P](man)
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3. [λx .P(x)](a)

4. [λx .P(x)]

5. [λyλx .R(y, x)](a)

6. [λx .R(y,a)](b)

7. [λP .∃x .P(x)](man)

8. [λP .∀x .P(x)](mortal)

9. λx .¬mortal(x)

10. [λPλx .¬P(x)](mortal)

11. [λx .¬mortal(x)](a)

12. [λQ .∀x .[man(x)→Q(x)]](mortal)

13. [λPλQ .∀x .[P(x)→Q(x)]](man)

14. [λPλQ .∀x .[P(x)→Q(x)]](man)(mortal)

15. [λx .P(x)∧Q(x)](a)

16. [λxλy .[R(y,a)∧Q(x)]](a)(b)

17. [λx .∃y .R(x, y)](y)

18. [λx .a](b)

19. [λx .[P(x)→ ∃x .R(b, x)]](a)

20. [λQ .∀x[mortal(x)→Q(x)]](λx[mortal(x)])

21. [λQ .∃P .∀x .[P(x)→Q(x)]](mortal)

22. [λPλx .¬P(x)](λx[mortal(x)])

23. [λPλx .P(x)](λx[¬mortal(x)])
You can check your answers using the Lambda Calculator.
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5.3.2 Semantics of Lλ

As in LPred, the semantic values of expressions in Lλ depend on a
model and an assignment function. As in LPred, a model M deter-
mines a set of individuals, which we will call D , and an interpre-
tation function I that maps non-logical constants of the language
to denotations of the appropriate kind based on this set of indi-
viduals and the set of truth values {T,F}.

Let T be the set of types (e for individuals, t for truth values,
⟨e, t⟩ for functions from individuals to truth values, etc.). For each
type τ ∈ T , the model determines a corresponding domain Dτ. Let
us define the STANDARD FRAME based on D as an indexed family
of sets (Dτ)τ∈T , where:

• De =D

• D t = {T,F}

• for any types σ and τ, D⟨σ,τ⟩ is the set of functions from Dσ

to Dτ.

A MODEL for Lλ based on D , then, is a pair ⟨(Dτ)τ∈T , I⟩, where:3

• (Dτ)τ∈T is a standard frame based on D

• for every type τ ∈ T , I assigns to every non-logical constant
of type τ an object from the domain Dτ.

Fundamentally, types are syntactic categories of expressions in the
logic, but speaking somewhat loosely, we say that τ is the type of
an object drawn from Dτ.

So much for models; now to assignments. Assignments pro-
vide values for variables of all types, not just those of type e. An
assignment thus is a function assigning to each variable of type τ
a denotation from the set Dτ.

The semantic value of an expression is defined as follows:

3This formalization is inspired by Gallin (1975), p. 12.
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1. Basic Expressions

(a) If α is a non-logical constant, then JαKM ,g = I(α).

(b) If α is a variable, then JαKM ,g = g(α).

2. Application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of
type σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g ).

3. Identity
Ifα andβ are expressions of the same type, then Jα =βKM ,g =
T iff JαKM ,g = JβKM ,g .

4. Negation
If φ is a formula, then J¬φKM ,g =T iff JφKM ,g = F.

5. Binary Connectives
If φ and ψ are formulas, then:

(a) Jφ∧ψKM ,g =T iff JφKM ,g =T and JψKM ,g =T.

(b) Jφ∨ψKM ,g =T iff JφKM ,g =T or JψKM ,g =T.

(c) Jφ→ψKM ,g =T iff JφKM ,g = F or JψKM ,g =T.

(d) Jφ↔ψKM ,g =T iff JφKM ,g = JψKM ,g .

6. Quantification

(a) Ifφ is a formula and v is a variable of type τ then J∀v .φKM ,g =
T iff for all objects o ∈Dτ:

JφKM ,g[v↦o] =T

(b) Ifφ is a formula and v is a variable of type τ then J∃v .φKM ,g =
T iff there is some object o ∈Dτ such that:

JφKM ,g[v↦o] =T
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7. Lambda Abstraction
If α is an expression of type τ, and u a variable of type σ,
then Jλu .αKM ,g is that function f from Dσ into Dτ such that

for all objects o in Dσ, f (o) = JαKM ,g[u↦o].

Exercise 6.

(a) Partially define a model for Lλ giving denotations to the con-
stants loves, n, and d of type ⟨e,⟨e, t⟩⟩, e, and e, respectively.

(b) Show that [λx . loves(n)(x)](d) and its beta-reduced version
loves(n)(d) have the same semantic value in your model us-
ing the semantic rules for Lλ.

Exercise 7. Relational kinship terms like aunt can be thought of
as denoting binary relations among individuals. We might there-
fore introduce a binary predicate Aunt to represent the aunt-
hood relation, such that a sentence like Sue is Alex’s aunt could
be represented as aunt(sue,alex). But consider Sue is an aunt!
(perhaps uttered in a context where Sue’s sister just gave birth).
This sentence might be taken to express an existential claim
like ∃x .aunt(sue, x). On such a usage, the noun aunt might
be taken to denote, rather than a binary relation, the property
that someone has if there is someone that they are the aunt of:
λy .∃x .aunt(y, x). In this expression, one of the arguments of the
relation is existentially bound. We might imagine that there is a
regular process that converts a relational noun like aunt into a
noun denoting the property of standing in the relevant relation to
some individual. Using Lλ, describe a function that would take as
input an arbitrary binary relation like the aunthood relation (type
⟨e,⟨e, t⟩⟩) and gives as output the property that an individual has
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if they stand in this relation to another individual. This is a one-
place predicate, so it is of type ⟨e, t⟩. The answer should therefore
take the form of a lambda expression of type ⟨⟨e,⟨e, t⟩⟩,⟨e, t⟩⟩.

Exercise 8. We normally consider eat a transitive verb, and ac-
cording to the kind of analysis we have done here, this would im-
ply a treatment as a binary relation, type ⟨e,⟨e, t⟩⟩. And yet we
do have usages where the object does not appear, as in Have you
eaten? One might imagine that a two-place predicate can be re-
duced to a one-place predicate through an operation that existen-
tially quantifies over the object argument. Define a function that
does this and express it as a well-formed lambda term in Lλ. The
input to the function should be a binary relation (type ⟨e,⟨e, t⟩⟩)
and the output should be a unary relation (type ⟨e, t⟩) where the
object argument has been existentially quantified over.

Exercise 9. Like eat, the verb shave can be used both transitively
and intransitively; consider The barber shaved John and The bar-
ber shaved. But in contrast to eat, the intransitive version does not
mean that the barber shaved something; it means that the barber
shaved himself. Give an expression of Lλ of type ⟨⟨e,⟨e, t⟩⟩,⟨e, t⟩⟩
which produces this sort of denotation from a two-place predi-
cate. (Adapted from Dowty et al. (1981), Problem 4-7, p. 97.)

5.4 Further reading

This chapter has provided just the bare minimum that is needed
for starting to do formal semantics. There is no trace of proof the-
ory in this chapter, and there has been only scant presentation
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of model theory, so this can hardly be considered a serious intro-
duction to the subject. Carpenter (1998) is an excellent introduc-
tion to the logic of typed languages for linguists who would like to
deepen their understanding of such issues.
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6.1 Introduction

We will now use the lambda calculus to translate constituents of
arbitrary size, from words and phrases all the way up to the sen-
tences themselves, into logic. We will show how to carry out a
translation of English into the lambda calculus, and how to com-
pose the resulting lambda terms and their denotations so that the
result is a logical formula whose truth conditions are the same
as those of the English sentence. Our underlying assumption is
that lambda calculus expressions translate syntactic constituents
and compose in a way that mirrors the syntactic structure of the
sentence. It is the job of a theory of syntax to determine what
these constituents are; not just any substring of an English sen-
tence is a constituent. Here we will just give a toy syntax that can
be replaced by more sophisticated syntactic theories without sig-
nificant changes to the semantics. The process by which trans-
lations of complex expressions are derived compositionally from
the translations of their parts is sometimes referred to as a DERIVA-
TION.

How, then, do denotations of constituents compose? We will
first explore the hypothesis, inspired by Frege’s idea of saturation,
that there is only one way for the meanings of two subexpressions
to combine to give the meaning of a complex expression: applica-
tion of a function to an argument. In this chapter, we will define a
semantics for a fragment of English that adheres to this principle.
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To do so, we will translate expressions of English into expressions
of Lλ. A name like Agnetha will translate as the type e expression a;
both denote the individual Agnetha. The intransitive verb smiled
will be translated as the type ⟨e, t⟩ expression λx .smiled(x); both
denote the set of smilers. We write the ‘translates to’ relation as↝:

(1) a. Agnetha↝ a
b. smiled↝λx .smiled(x)

The combination, Agnetha smiled, will then be translated as the
result of applying the translation of the verb to the translation of
the subject:

(2) [λx .smiled(x)](a)

a

Agnetha

λx .smiled(x)

smiled

... or equivalently, through beta reduction:

(3) smiled(a)

a

Agnetha

λx .smiled(x)

smiled

The formulas at the tops of these trees have the same denotation
as each other and as the English sentence Agnetha smiled; that
denotation is the truth value of this sentence.

Again, we are using an indirect interpretation method in this
book, which means that we translate English to the representa-
tion language first (using ↝), and then interpret the representa-
tion language (using J⋅K). So rather than the Heim & Kratzer (1998)
style:

(4) JAgnetha smiledK =T
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we instead write:

(5) Agnetha smiled↝ smiled(a)

and:

(6) Jsmiled(a)K =T

in order to express that the sentence is true (ignoring here the
usual adornment of the denotation brackets with a specification
of a model and an assignment function). At the time of writing,
both styles are widely used in the semantic literature, and the choice
depends on what the author finds most convenient for their ex-
pository purposes.

We take the denotations of the English expressions to be in-
herited from those of their translations in lambda calculus.1 A
given sentence can then be said to be true with respect to a model
and an assignment function if its translation is true with respect
to that model and assignment function.

Indirect interpretation is the style that Montague (1974b) used
in his famous work entitled The Proper Treatment of Quantifica-
tion in Ordinary English (‘PTQ’ for short). There, he specified a set
of principles for translating English into a logic. This work stands
in contrast to another famous Montague paper, English as a For-
mal Language (Montague, 1974a), in which a direct interpretation
style was used. Montague was very clear that this translation pro-
cedure was only meant to be a convenience; one could in princi-
ple specify the denotations of the English expressions directly. So
we will continue to think of our English expressions as having de-
notations, even though we will specify them indirectly via a trans-
lation to the lambda calculus. Nevertheless, the expressions of the
lambda calculus are not themselves the denotations, just like the

1Assuming that there may be multiple translations into the representation
language for a given expression of English, there is not necessarily a unique de-
notation, although the representation language is unambiguous. For example, a
given word might have multiple distinct translations.
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name “Agnetha” is not itself the person Agnetha. Lambda calculus
expressions are strings with a certain length, structure, etc., while
denotations are entities, truth values, sets and functions, etc. We
have two languages at play, a natural language such as English
(our object language) and the lambda calculus (a formal language,
our representation language). We are translating from the natural
object language to the formal representation language, and spec-
ifying the semantics of the formal representation language in our
meta-language (which is also English, mixed with talk of sets and
relations).2

We will not translate every expression of English to our repre-
sentation language, only a well-behaved ‘fragment’ of it, as Richard
Montague called it. In ‘English as a formal grammar’, Montague
(1974a) formally defined the first fragment of English, consisting
of the following ingredients: a specification of our formal repre-
sentation language, with syntactic and semantic rules; a specifi-
cation of the syntax of the English expressions we cover; a list of

2An important difference between the tack we are taking here and the one
taken in Heim & Kratzer’s (1998) textbook is that here the λ symbol is part of
our representation language but not the meta-language, whereas in Heim and
Kratzer the λ symbol is part of the meta-language (and there is no distinction
between the meta-language and the representation language). For example, in
their style, one would write:

(i) JsnoresK =λx . x snores

with a mix of English and lambdas on the right-hand side of the equation. In
contrast, we write equations mapping object language to representation lan-
guage like this:

(ii) snores↝λx .snores(x)

and equations mapping representation language to denotations specified in the
meta-language like this:

(iii) Jλx .snores(x)KM ,g
= I(snores)

One should carefully distinguish between these two ways of using the λ symbol
and make sure to be consistent.
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lexical entries; and a list of composition rules. Throughout this
book we too will build up a fragment in a similar style.

We already have our representation language: Lλ as defined in
the previous chapter. The next step is to specify the rules that gen-
erate the syntactically well-formed expressions of our fragment of
English. We will use a simplistic theory of syntax called context-
free grammar. Many details of the syntactic theory don’t matter,
as long as the syntax delivers the right structure. For example,
the syntactic categories we use in the syntax rules and as labels
of nonterminals (nodes with daughters) are only for purposes of
exposition, and any other set of labels would do just as well.

(7) Syntax
S → DP VP
S → S CoordP
CoordP → Coord S
VP → V (DP∣AP∣PP∣NegP)
NegP → Neg VP∣AP
AP → A (PP)
DP → D (NP)
NP → N (PP)
NP → A NP
PP → P DP

The vertical bar ∣ separates alternative possibilities, and the paren-
theses signify optionality, so the VP rule means that a VP can con-
sist solely of a verb, or of a verb followed by an NP, or of a verb
followed by an AP, etc.

The terminal nodes (nodes without daughters, i.e. leaves) of
the syntax trees produced by these syntax rules may be labeled by
the following words:

(8) Lexicon

Coord: and, or
Neg: not
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V: smiled, laughed, loves, hugged, is, did
A: Swedish, happy, kind, proud
N: singer, drummer, musician
D: the, a, every, some, no
D: Agnetha, Frida, Björn, Benny,
everybody, somebody, nobody
P: of, with

For example, this grammar generates Björn is the drummer and
Benny did not smile, with syntactic structures as shown in the fol-
lowing analysis trees:

(9) S

DP

D

Björn

VP

V

is

DP

D

the

NP

N

drummer

(10) S

DP

D

Benny

VP

V

did

NegP

Neg

not

VP

V

smile
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Exercise 1. Which of the following strings are sentences of the
fragment of English that we have defined (modulo sentence-
initial capitalization)? Draw syntax trees for those that are.

(a) George loves everybody.

(b) Some drummer smiled every happy musician.

(c) Agnetha is not a drummer.

(d) Frida is.

(e) No is a happy singer.

(f) Somebody is proud of the singer.

(g) A drummer loves proud of Björn.

(h) The proud drummer of Björn loves every happy happy happy
happy drummer.

(i) Frida smiles with nobody.

(j) Agnetha and Frida are with Björn.

(k) Agnetha is with Björn and Frida is with Benny.

Keep in mind that the syntax might generate sentences that don’t
make any sense, and that’s OK. At least some of the nonsensical
sentences will be ruled out once we define semantic interpreta-
tions for these words.

In the trees below, sometimes we “prune” non-branching nodes.
For example, we might write:

(11) DP

Agnetha
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instead of

(12) DP

D

Agnetha

Now that we have defined the syntax of our fragment of En-
glish, we need to specify how the expressions generated by these
syntax rules are interpreted. To do so, we will translate them into
expressions of Lλ. We will associate translations not only with
words, but also with syntactic trees. We can think of words as de-
generate cases of trees, so in general, translations go from trees to
expressions of our logic.

In accordance with Frege’s conjecture, at this time we have
only one rule for composing the denotation of a complex expres-
sion out of the denotations of the parts. (We will add further rules
to our system in later chapters.) Our rule, FUNCTION APPLICA-
TION, just applies a function to an argument:

Composition Rule 1. Function Application (FA)
Let γ be a syntax tree whose only two subtrees are α and β (in any
order) where:

• α↝α′ where α′ has type ⟨σ,τ⟩

• β↝β′ where β′ has type σ.

Then
γ↝α′(β′)

(The prime symbol ′ in α′ is not intended to have any meaning
of its own; α′ is just a convenient way to refer to whatever α is
translated as.)
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Exercise 2. If γ is a syntax tree whose only two subtrees are α and
β (in any order), where:

• α↝α′ where α′ has type ⟨σ,τ⟩

• β↝β′ where β′ has type σ.

then what type does the translation of γ have, assuming that it is
translated according to the rule of Function Application?

This rule will provide a translation into Lλ for any tree that has
two immediate subtrees, as long as their types match appropri-
ately. The node at the top of such a tree is called a BRANCHING

NODE because it branches into multiple subtrees. If a tree has
no branches, then it is called a NON-BRANCHING NODE. For non-
branching nodes, we will simply assume that the denotation at
the higher node is the same as the denotation at the lower one:

Composition Rule 2. Non-branching Nodes (NN)
If β is a tree whose only daughter is α, where α↝α′, then β↝α′.

With these two rules, we can assign denotations to each sub-
tree in the syntactic structure of Agnetha smiled as follows (show-
ing only fully beta-reduced translations at each node, along with
their types):
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(13) S
smiled(a)

t

DP
a
e

D
a
e

Agnetha

VP
λx .smiled(x)

⟨e, t⟩

V
λx .smiled(x)

⟨e, t⟩

smiled

In order to provide a starting point to the compositional pro-
cess, we assume that the terminal nodes provided by the syntac-
tic theory each contribute independent semantic values and have
translations that are individually stipulated and not determined
by rules such as Function Application. What these terminal nodes
are can vary from theory to theory. While the traditional picture
takes them to be words, certain theories of syntax and morphol-
ogy identify them in other ways. For example, theories such as
Distributed Morphology (Halle & Marantz, 1993) assume that there
is no sharp boundary between word formation and sentence for-
mation; on such theories, the terminal nodes may consist of units
that are smaller than a word.

A related question is whether the Function Application rule
applies to every branching node or whether it has exceptions. Id-
ioms such as spill the beans or kick the bucket are often argued
to make their semantic contribution to the sentence as a whole.
Theories such as Construction Grammar (Croft & Cruse, 2004) as-
sume that there is no sharp boundary between the meaning of
words and of larger constructions such as idioms; on such theo-
ries, one may want to consider these idioms as nonterminal nodes
whose translations are not determined by the Function Applica-
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tion rule.

6.2 Fun with Function Application

6.2.1 Agnetha loves Björn

Let us now consider how to analyze a simple transitive sentence
like Agnetha loves Björn. We will represent the denotation of the
verb loves as follows:

(14) loves↝λyλx . loves(x, y)

Can this verb combine semantically with a type-e direct object via
Function Application? Yes, it can; the types match. This is shown
in the following derivation for Agnetha loves Björn:

(15) S
t

loves(a,b)

DP
e
a

Agnetha

VP
⟨e, t⟩

λx . loves(x,b)

V
⟨e,⟨e, t⟩⟩

λyλx . loves(x, y)

loves

DP
e
b

Björn

Via Function Application, the transitive verb loves combines
with the object Björn. The VP loves Björn thus comes to denote
(the characteristic function of) the set of all individuals who love
Björn, which we can think of as the property of loving Björn. This
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property is then attributed to Agnetha through a second applica-
tion of Function Application at the top node.

Exercise 3. For both of the following trees, give a fully beta-
reduced translation at each node. Give appropriate lexical entries
for words that have not been defined above.

(a) S

DP

Björn

VP

V

laughed

(b) S

DP

Frida

VP

V

hugged

DP

Benny

Exercise 4. Assume that the ditransitive verb introduce is of type
⟨e,⟨e,⟨e, t⟩⟩⟩. Give a lexical entry for introduce of this type and
provide appropriate translations for the terminal and nontermi-
nal nodes in the tree in Figure 6.1. You will also need to assume a
lexical entry for to that works along with your assumption about
introduce and the structure of the syntax tree.
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S

DP

Benny

VP

VP

V

introduced

DP

Agnetha

PP

P

to

DP

Björn

Figure 6.1: A ditransitive verb

Exercise 5. In some languages, there is a morpheme (e.g., Mid-
dle Voice in Ancient Greek, reflexivizing affix in Kannada, Passive
Voice in Finnish, etc.) that attaches to the verb stem and reduces
its arity by one. Let us take the following imaginary morphemes
self1, self2, and self3. Assuming the syntactic structure given, give
a denotation for each of these morphemes.

Assume that Carlos is an ordinary proper name, translated as
a constant of type e, and assume that shaves is an ordinary tran-
sitive verb, translated as an expression of type ⟨e,⟨e, t⟩⟩. You can
use the lexical entry for introduce given in the previous exercise.

(a) For the sentence Carlos self1-shaves, make the structure below
yield the denotation ‘Carlos shaves himself’ by supplying the
denotation of self1.

Carlos
self1 shaves

(b) For the sentence Carlos self2-introduced Paco, make the struc-
ture below yield the denotation ‘Carlos introduced Paco to
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Carlos (himself)’ by supplying the denotation of self2.

Carlos

self2 introduced
Paco

(c) For the sentence Carlos self3-introduced Paco, make the struc-
ture below yield the denotation ‘Carlos introduced Paco to
Paco (himself)’ by supplying the denotation of self3.

Carlos

self3 introduced
Paco

Make sure that your denotations work not just for sentences in-
volving Carlos and Paco, but arbitrary proper names.

(Exercise due to Maribel Romero.)

6.2.2 Björn is kind

Now let us consider how to analyze a sentence with an adjective
following is, such as Björn is kind. The syntactic structure is as
follows:

(16) S

DP

Björn

VP

V

is

AP

kind
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We will continue to assume that the proper name Björn is trans-
lated as the constant b, of type e. We can assume that kind de-
notes a function of type ⟨e, t⟩, the characteristic function of a set
of individuals (those that are kind). Let us use kind as a constant
of type ⟨e, t⟩, and translate kind thus.

(17) kind↝λx .kind(x)

Now, what is the contribution of the copula is? Besides sig-
naling present tense, it does not seem to accomplish more than
to link the predicate ‘kind’ with the subject of the sentence. Since
we have not started dealing with tense yet, we will ignore the for-
mer function and focus on the latter. (We also set aside cases
in which is indicates identity rather than predication, as in Mark
Twain is Samuel Clemens.) We can capture the fact that the copula
is connects the predicate to the subject by treating it as an IDEN-
TITY FUNCTION, a function that returns whatever it takes in as in-
put. In this case, the copula is takes in a function of type ⟨e, t⟩,
and returns that same function. (We adopt the same approach for
other words that seem to lack meaning of their own, such as did
in Benny did not smile.)

(18) is↝λP .P

This implies that is denotes a function that takes as its first argu-
ment another function P , where P is of type ⟨e, t⟩, and returns P .

With these rules, we will end up with the following analysis for
the sentence Björn is kind:
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(19) S
t

kind(b)

DP
e
b

Björn

VP
⟨e, t⟩

λx .kind(x)

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨e, t⟩

λx .kind(x)

kind

Each node shows the syntactic category, the semantic type, and
a fully beta-reduced translation to lambda calculus. In this case,
Function Application is used at all of the branching nodes (S and
VP), and Non-branching Nodes is used at all of the non-branching
non-terminal nodes (DP, V, and AP). The individual lexical entries
that we have specified are used at the terminal nodes (Björn, is,
and kind).

6.2.3 Frida is with Benny

Like adjectives, prepositional phrases can also serve as predicates,
as in, for example, Frida is with Benny. Let us translate with as
follows, invoking a binary predicate with:

(20) with↝λyλx .with(x, y)

Via Function Application, the preposition with combines with its
object Benny, and the resulting PP combines with is to form a VP.
The translation of the VP is an expression of type ⟨e, t⟩, denoting
a function from individuals to truth values. This applies to the
denotation of Frida to produce a truth value.
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(21) S
t

DP
e

Frida

VP
⟨e, t⟩

V
⟨⟨e, t⟩,⟨e, t⟩⟩

is

PP
⟨e, t⟩

P
⟨e,⟨e, t⟩⟩

with

DP
e

Benny

Exercise 6. Derive the translation into Lλ for Frida is with Benny
by giving a fully beta-reduced translation for each node.

6.2.4 Benny is proud of Frida

Like prepositions, adjectives can denote functions of type ⟨e,⟨e, t⟩⟩.
proud is an example; in Benny is proud of Frida, the adjective
proud expresses a relation that holds between Benny and Frida.
We can capture this by assuming that proud translates as:

λyλx .proud(x, y)

This is an expression of type ⟨e,⟨e, t⟩⟩ denoting a function that
takes two arguments, first a potential object of pride (such as Frida),
then a potential bearer of such pride (e.g. Benny), and returns
True if the pride relation holds between them.

In contrast to with, the preposition of does not seem to signal
a two-place relation in this context. We therefore assume that of is
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a function word like is, and also denotes an identity function. Un-
like is, however, we will treat of as an identity function that takes
an individual and returns an individual, so it will be of type ⟨e,e⟩.

(22) of ↝λx . x

So the adjective phrase proud of Frida will have the following struc-
ture:

(23) AP
⟨e, t⟩

A
⟨e,⟨e, t⟩⟩

proud

PP
e

P
⟨e,e⟩

of

DP
e

Frida

Exercise 7. Give a lexical entry for proud and a fully beta-reduced
form of the translation at each node for Benny is proud of Frida.
(You will need to draw out more of the tree structure than what is
shown above.)

6.2.5 Agnetha is a singer

Let us consider Agnetha is a singer. The noun singer can be an-
alyzed as an ⟨e, t⟩ type property like Swedish, the characteristic
function of the set of individuals who are singers.

The indefinite article a is another function word that appears
to be semantically vacuous, at least on its use in the present con-
text. We will assume that a, like is, denotes a function that takes an
⟨e, t⟩-type predicate and returns it. In general, it is common and
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convenient to assume that all semantically vacuous words denote
such identity functions.

(24) a↝λP .P

With these assumptions, the derivation will go as follows.

(25) S
t

DP
e

Agnetha

VP
⟨e, t⟩

V
⟨⟨e, t⟩,⟨e, t⟩⟩

is

DP
⟨e, t⟩

D
⟨⟨e, t⟩,⟨e, t⟩⟩

a

NP
⟨e, t⟩

singer

Exercise 8. Give fully beta-reduced translations at each node of
the tree for Agnetha is a singer.

Exercise 9. Can we treat a as ⟨⟨e, t⟩,⟨e, t⟩⟩ in a sentence like A
singer loves Björn? Why or why not?

Exercise 10. Assume that Norwegian and millionaire are both of
type ⟨e, t⟩, following the style we have developed so far. Is it pos-
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sible to assign truth conditions to the following sentence using
those assumptions? Why or why not?

(26)

S

DP

Frida

VP

V

is

DP

D

a

NP

A

Norwegian

NP

N

millionaire

6.3 Negation

Now let us consider how to analyze the word not in a sentence like
Björn is not kind. The syntactic structure would be as follows:

(27) S

DP

Björn

VP

V

is

NegP

Neg

not

AP

A

kind
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The denotation of Björn is not kind should be the negation of Björn
is kind:

(28) ¬kind(b)

Thus the property that (is) not kind denotes should be something
that applies to an individual and yields ‘true’ only in case the that
the individual is not kind:

(29) λx .¬kind(x)

The denotation of not should apply to a property and produce
such a function for any arbitrary predicate, not just kind. The fol-
lowing denotation will do the trick:

(30) not ↝λPλx .¬P(x)

This lambda expression denotes a function that takes as input
a predicate (P ) and returns a new predicate, one that returns True
given an input x only if P does not hold of x, and otherwise returns
False. We will refer to this lambda expression as predicate nega-
tion. Note that in this lambda expression, the value description is
λx .¬P(x), so the return value is itself another function.
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Exercise 11. Using predicate negation, give a compositional anal-
ysis of Björn is not kind, by showing the translations and types at
each node of the syntax tree.

b
e

Björn

λP .λx .P(x)
⟨⟨e, t⟩,⟨e, t⟩⟩

is
λP .λx .¬P(x)
⟨⟨e, t⟩,⟨e, t⟩⟩

not

λx .kind(x)
⟨e, t⟩

kind

Exercise 12. Can the ‘predicate negation’ meaning for not pro-
vided in (30) also be applied to the negation of predicate nominals
as in Björn is not a singer? Justify your answer.
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Exercise 13. In Spanish, the word order and syntactic structure
of negative sentences is slightly different than that of English, as
shown below.

(31) Björn
Björn

no
not

es
is

amable
kind

‘Björn is not kind’

Does the lexical entry provided in (30) give equivalent truth condi-
tions in both Spanish and English despite this difference in word
order? To answer this question, show the translations and types at
each node of the syntax tree below.

b
e

Björn

λPλx .¬P(x)
⟨⟨e, t⟩,⟨e, t⟩⟩

no
λP .P

⟨⟨e, t⟩,⟨e, t⟩⟩

es

λx .kind(x)
⟨e, t⟩

amable

]
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6.4 Quantifiers: type ⟨⟨e, t⟩, t⟩

6.4.1 Quantifiers

Let us now consider how to analyze quantifiers like everybody and
nobody. Consider the sentence:

(32) Everybody smiled.

We have assumed that a VP like smiled denotes a predicate (type
⟨e, t⟩) and that a sentence like (32) denotes a truth value (type t ).
The translation of Everybody smiled should be something like the
following (assuming that every individual in the domain is con-
ceived of as human):

(33) Everybody smiled↝∀x .smiled(x)

Informally, then, the contribution of everybody to the denotation
of a sentence is a template:

(34) ∀x . (x)

where the verb phrase fills in the underlined slot. This idea can
be formally implemented through lambda abstraction. Everybody
will denote a function that takes an arbitrary predicate P , and
yields a truth value: true if everything satisfies P and false if not.
The following lexical entry for everybody says, “Give me a predi-
cate P as input, and I will return as output a truth value – true if
everybody satisfies P , and false otherwise”:

(35) everybody↝λP .∀x .P(x)

As P is a variable that stands for a predicate—something of type
⟨e, t⟩—the type of the expression denoted by everybody is:

(36) ⟨⟨e, t⟩, t⟩

This is the type of a QUANTIFIER.
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This denotation for everybody can be combined via Function
Application with the denotation for smiled in the following man-
ner:

(37) ∀x .smiled(x)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx .smiled(x)
⟨e, t⟩

smiled

In this derivation, the VP is fed as an argument to the subject DP,
rather than the other way around. Recall that Function Applica-
tion does not care about the order of the arguments, so this or-
der of application works just as well as the more familiar situation
where the VP takes the subject as an argument.

For any type τ, an expression of type ⟨τ, t⟩ can be seen as a
predicate that applies to arguments of type τ. So quantifiers can
be seen as higher-order predicates: that is, as predicates of predi-
cates. For instance, somebody can be seen as denoting a function
that takes as input a predicate and returns true iff there is at least
one individual that satisfies the predicate:

(38) somebody↝λP .∃x .P(x)

(Here we are glossing over the fact that somebody quantifies over
animate individuals, and just treating it as a synonym of some-
thing.)

In contrast, the function denoted by nobody returns true iff
there is nothing satisfying the predicate:

(39) nobody↝λP .¬∃x .P(x)

(Here again we are glossing over the animacy restriction for no-
body and treating it as a synonym of nothing.)
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6.4.2 Quantificational determiners

Now what about determiners like every, no, and some? We want
every singer to function in the same way as everyone, so these should
denote functions that take the denotation of a noun phrase and
return a quantifier. The input to these determiners (e.g. singer) is
of type ⟨e, t⟩, and their output is a quantifier, of type ⟨⟨e, t⟩, t⟩. So
the type of these kinds of determiners will be:

(40) ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩

In other words, quantificational determiners like every expect a
predicate (like singer) as their argument, and return a function,
which itself expects a predicate (like smiled). The latter function
returns a truth value.

For each of these quantificational determiners, the truth value
that is returned depends on the two input predicates, and can be
specified using the quantifiers ∃ and ∀ of first-order logic:

(41) some↝λPλP ′ .∃x .[P(x)∧P ′(x)]
(42) no↝λPλP ′ .¬∃x .[P(x)∧P ′(x)]
(43) every↝λPλP ′ .∀x .[P(x)→ P ′(x)]

These lexical entries will yield analyses like the following:
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(44) S
t

∀x .[singer(x)→ smiled(x)]

DP
⟨⟨e, t⟩, t⟩

λP ′ .∀x .[singer(x)→ P ′(x)]

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩

λPλP ′ .∀x .[P(x)→ P ′(x)]

every

NP
⟨e, t⟩

λx .singer(x)

singer

VP
⟨e, t⟩

λx .smiled(x)

V
⟨e, t⟩

λx .smiled(x)

smiled

The same strategy can be applied to indefinite descriptions
like a singer. Previously, we analyzed indefinite descriptions in
sentences like Agnetha is a singer, where the indefinite descrip-
tion functions as a PREDICATE, and applies to a subject. But an
indefinite description can also function as the subject or object of
a transitive verb, as in the following sentences:

(45) a. A singer loves Frida. [subject position]
b. Frida loves a singer. [object position]

In such uses, a singer functions as an ARGUMENT of the verb, as
opposed to a predicate. (In this instance, we are using the term ‘ar-
gument’ in the sense in which it is used in the study of natural lan-
guage syntax, referring to a syntactic dependent of an argument-
selecting lexical item like a verb.) If we applied our ⟨⟨e, t⟩,⟨e, t⟩⟩
analysis to a case like A singer smiled, where the indefinite appears
in subject position, we would be in a predicament:
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(46) S
???

DP
⟨e, t⟩

D
⟨⟨e, t⟩,⟨e, t⟩⟩

a

N
⟨e, t⟩

singer

VP
⟨e, t⟩

smiled

We currently have no rule for combining two expressions of type
⟨e, t⟩, because neither is expecting the other as an argument. In
the next chapter, we will define a rule that can combine two ex-
pressions of type ⟨e, t⟩, namely Predicate Modification. But even
that rule does not give the right meaning. We can escape this
predicament by providing the indefinite article with a translation
as a quantificational determiner.

Exercise 14. Give an analysis of A singer loves Frida using Func-
tion Application and Non-Branching Nodes. Your analysis should
take the form of a tree, specifying at each node, the syntactic cat-
egory, the semantic type, and a fully beta-reduced translation to
Lλ. The translation of the sentence should be true in any model
where there is some individual that is both a singer and someone
who loves Frida. You may have to introduce a new lexical entry for
the indefinite article a. Your analysis should account for the fact
that the sentence is true in any model where there is an individual
who is both a singer and who stands in the ‘loves’ relation with
Frida, and no others.

Exercise 15. For each of the following trees, give the semantic type

Draft January 18, 2024



Function Application 227

and a completely beta-reduced translation at each node. Give
appropriate lexical entries for words that have not been defined
above, following the style we have developed:

• Adjectives, non-relational common nouns, and intransitive
verbs are of type ⟨e, t⟩.

• Transitive verbs are of type ⟨e,⟨e, t⟩⟩.

• Proper names are of type e.

• Quantificational DPs are of type ⟨⟨e, t⟩, t⟩.

• Determiners are of type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩.

The lexical entries should be assigned in a way that captures what
a model should be like if the sentence is true. For example, No-
body likes Ursula should be predicted to be true in a model such
that no individual stands in the ‘like’ relation to Ursula.

(a) S

DP

Everybody

VP

snores

(b) S

DP

Somebody

VP

V

hugged

DP

Ariel

(c)
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S

DP

Everyone

VP

V

is

AP

A

afraid

PP

P

of

DP

Ursula

(d) S

DP

Nobody

VP

V

likes

DP

Ursula

(e) S

DP

D

Some

NP

guy

VP

V

hugged

DP

Sebastian

Exercise 16. In the early 70’s, cases of VP coordination as in Sam
smokes or drinks were analyzed using CONJUNCTION REDUCTION,
a transformational rule that deletes the subject of the second
clause under identity with the subject in the first clause, so this
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sentence would underlyingly be Sam smokes or Sam drinks.

1. What translation into Lλ would the conjunction reduction
analysis predict for a case like Everybody smokes or drinks?

2. What is problematic about this translation?

3. Give an alternative lexical entry for or that avoids the prob-
lem with the conjunction reduction analysis.

4. Give a syntax tree and a step-by-step derivation of the truth
conditions for Sam smokes or drinks using your analysis.

5. Explain how your analysis avoids the problem.

6.4.3 Empirical diagnostics against type e

Under the analysis we have just given, quantifiers like everybody
and every singer are treated not as type e but as type ⟨⟨e, t⟩, t⟩. Is
there any viable analysis on which they are type e instead? In this
section, we list empirical diagnostics that can be used to argue
against such an analysis. These diagnostics can be used to show
that such expressions cannot be of type e. An expression of type
e denotes a particular individual, so two occurrences of the same
expression of type e denote the same individual (unless these ex-
pressions are context sensitive and the context changes from use
to use—pronouns like him and her, for example which we will ar-
gue get their meaning from assignment functions just like vari-
ables in logic, are arguably type e and yet may refer to different
individuals on different occasions of use). It follows that expres-
sions of type e should exhibit certain properties.

An expression of type e should validate subset-to-superset in-
ferences. For example:
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(47) Susan came yesterday morning.
∴ Susan came yesterday.

This is correctly predicted to be a valid inference under the as-
sumption that the subject (Susan) denotes an individual. Here is
why. The set of things that came yesterday morning is a subset of
the things that came yesterday. For any expression α (including
Susan), if α denotes an individual, then α came yesterday morn-
ing is true if the individual denoted by α is among the things that
came yesterday morning. But if that is true, then that individual is
among the things that came yesterday. Hence if the first sentence
is true, then the second sentence is true.

In contrast, the expression at most one letter fails to validate
subset-to-superset inferences.

(48) At most one letter came yesterday morning.
∴At most one letter came yesterday.

This inference is not valid, so at most one letter must not denote
an individual, so it must not be of type e.

Exercise 17. Among the quantificational determiners some, every,
no, at least one, at most one, which validate subset-to-superset in-
ferences? Give examples.

A second property that expressions of type e have is related
to the LAW OF EXCLUDED MIDDLE, which is a theorem of proposi-
tional and predicate logic. The law of excluded middle says that
[p ∨¬p] is true for any formula p. That is to say, the disjunction
of any p with its negation is a tautology. For example:

(49) John is over 30 years old, or John is not over 30 years old.

This is a tautology, and that is because John is an expression of
type e. Any expression of type e will yield a tautology in a sen-
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tence like this. Here is why. Everything is either over 30 years old
or not over 30 years old; together these two sets cover the entire
set of individuals. If α is of type e, then α is over 30 years old is
true iff the individual that α denotes is over 30 years old. α is not
over 30 years old is true iff the individual is not over 30 years old.
Since everything satisfies at least one of these criteria, sentence
(49) (under a standard analysis of or as logical disjunction) can-
not fail to be true.

But the following sentence is not a tautology (here, the second
disjunct should be read with everybody taking scope over not):

(50) Every woman in this room is over 30 years old, or every
woman in this room is not over 30 years old.

So every woman cannot be of type e.

Exercise 18. Among the quantificational determiners some, every,
no, at least one, at most one, which give rise to tautologies in ex-
amples analogous to (49) and (50)? Give examples. For which of
these cases, then, does this diagnostic provide evidence against a
type e analysis?

A third property that expressions of type e should have is re-
lated to the LAW OF NON-CONTRADICTION, another theorem of
propositional and predicate logic. The law of non-contradiction
is the principle that [p ∧¬p] is false for any formula p. That is to
say, the conjunction of any p with its negation is a contradiction.
If we take the sentence Mont Blanc is higher than 4,000m and con-
join it with its negation, the result is self-contradictory:

(51) Mont Blanc is higher than 4,000m, and Mont Blanc is not
higher than 4,000m.

This sentence is self-contradictory because Mont Blanc denotes
an individual. Here is why. Nothing that counts as ‘higher than
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4,000m’ counts as ‘not higher than 4,000m’; these two sets are dis-
joint. If α is of type e, then α is higher than 4,000m is true if and
only if the individual that α denotes is higher than 4,000m. In
that case, the second conjunct must be false. The same reason-
ing works in reverse; if the second conjunct is true, then the first
must be false. The two conjuncts stand in contradictory opposi-
tion to each other, as p and ¬p do. Hence, the conjunction (under
an analysis of and as logical conjunction) can never be true.

The following sentence, however, is not self-contradictory:

(52) More than two mountains are higher than 4,000m, and
more than two mountains are not higher than 4,000m.

Evidently, the two conjuncts do not stand in contradictory oppo-
sition to each other, and the law of contradiction does not prevent
them from being true at the same time. If more than two moun-
tains had type e, and picked out a particular individual, then we
would expect the sentence to be self-contradictory. It is not, so
more than two mountains must not have type e.

Importantly, it can happen that a given expression is not of
type e, and yet still gives rise to a contradiction in sentences like
this. For example:

(53) Every mountain is higher than 4,000m, and every moun-
tain is not higher than 4,000.

This sentence is contradictory, but that is not grounds for con-
cluding that every mountain is type e. The implication only goes
in one direction: If a given expression fails to give rise to a contra-
diction in this type of example, then that is positive evidence that
it is not type e (as long as it is not context-sensitive). If it gives rise
to a contradiction, then it may or may not be type e.

Exercise 19. Among the quantificational determiners some, every,
no, at least one, at most one, which give rise to contradictions in
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sentences like (51) and (52)? Give examples. For which of these
cases, then, does this diagnostic provide evidence against a type e
analysis?

Exercise 20. This sentence is not contradictory: At most two
mountains are higher than 4,000m, and at most two mountains
are not higher than 4,000m. This shows that at most two moun-
tains is not an expression of type e. Explain why. (Your answer
could take the form, “If this expression were of type e, we would
expect ..., but instead we find the opposite: ...”)

6.5 Quantifiers in object position

So far, we have restricted our attention to sentences with quan-
tifiers in subject position, as in Everybody likes Sam. We have
not considered sentences with quantifiers in object position, as
in Sam likes everybody. As it happens, it is not possible to give
an analysis of the latter type of sentences using Function Applica-
tion alone. In Chapter 7, we will enrich our suite of compositional
mechanisms so that we can deal with the so-called ‘Problem of
Quantifiers in Object Position’ in a systematic way, with the use of
a syntactic transformation rule called Quantifier Raising (QR) and
a composition rule called Predicate Abstraction.

For now, let’s assume that a transitive verb like like combines
with a quantifier like everybody in the following manner:
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(54) λx .∀z[like(x, z)]
⟨e, t⟩

λyλx . like(x, y)
⟨e,⟨e, t⟩⟩

like

λP .∀zP(z)
⟨⟨e, t⟩, t⟩

everybody

In general, let us assume that any English expression like a tran-
sitive verb that translates as R of type ⟨e,⟨e, t⟩⟩ can combine with
a quantificational expression translated as Q of type ⟨⟨e, t⟩, t⟩ to
produce a type ⟨e, t⟩ predicate of the form λx .Q(λz .R(z)(x)).
We can treat this as an ad-hoc composition rule called ‘Quantifi-
cational Objects’.

Composition Rule 3. Quantificational Objects (QO)
Let γ be a syntax tree whose only two subtrees are α and β (in any
order) where:

• α↝R where R has type ⟨e,⟨e, t⟩⟩

• β↝Q where Q has type ⟨⟨e, t⟩, t⟩.

Then
γ↝λx .Q(λz .R(z)(x))

This rule is a special case of a type-shifting rule we will discuss in
Chapter 7.

Exercise 21. Using the rule of Quantificational Objects (QO), and
the lexical entry for nobody given above, compositionally derive a
meaning representation for likes nobody.
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6.6 Negation and Quantifiers

6.6.1 Scope ambiguity

Consider the English sentence Everyone doesn’t like Sam. What
truth conditions does our current theory derive for this? If we use
predicate negation marker presented in (30) and the lexical entry
for everybody that we’ve just given, then we derive truth condi-
tions on which the universal quantifier scopes over negation: for
every person, that person does not like Sam, as shown in (55) be-
low.

(55) ∀x .¬like(x,s)

That is indeed the most natural reading out of the blue. But con-
text and prosody can bring out another reading:

(56) Speaker 1: Everyone likes Sam!
Speaker 2: Well, EVERYONE doesn’t like Sam. (Jim doesn’t
like him.)

In this case, negation scopes over the the entire sentence, includ-
ing the quantifier, as shown in (57) below.

(57) ¬∀x . like(x, s)

One way of accounting for this ambiguity is to positing two differ-
ent meanings for negation. The first is predicate negation, which
was presented in (30). Predicate negation negates the predicate in
a subject-predicate structure, as in Bjorn is not kind. The second
is sentential negation. In this case, not operates at the sentence
level.

A phrase in English that unambiguously expresses sentential
negation is It is not true that, which can be analyzed as a function
of type ⟨t , t⟩, flipping true to false and false to true:

(58) It is not true that ↝λp .¬p
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A derivation for It is not true that everybody likes Sam is shown in
the following tree.

(59) ¬∀x . like(x,s)
t

λp .¬p
⟨t , t⟩

It is not the case that

∀x . like(x,s)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx . like(x,s)
⟨e, t⟩

λyλx . like(x, y)
⟨e,⟨e, t⟩⟩

likes

s
e

Sam

To account for the reading of Everybody doesn’t like Sam where
not scopes over everybody, let us assume that not has a sentential
negation meaning along with its predicate negation meaning:

(60) not ↝λp .¬p

Of course, syntactically, at least on the surface, not combines with
a verb phrase rather than a sentence. But appearances can be
deceiving. As we discuss in more detail in Chapter 7, theories of
grammar commonly make a distinction between at least two lev-
els of syntactic representation, which can be called Surface Struc-
ture (SS) and Logical Form (LF). The latter is the level of syntactic
representation that is actually the input to the semantics. If we as-
sume that at LF, not appears higher in the tree than everybody as in
(59), then we can derive the inverse scope reading for Everybody
doesn’t like Sam.
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Sentences with quantifiers in object position are sometimes
scopally ambiguous as well. Consider for example:

(61) Sam doesn’t like everybody.

This can mean either ‘It is not the case that Sam likes everybody’
(on which reading Sam still might like someone), or ‘Everybody
is such that Sam doesn’t like them’, in other words, ‘Sam likes no-
body’. On the former reading, negation takes scope over the uni-
versal quantifier, and on the latter, the universal quantifier takes
scope over negation.

Exercise 22. (a) Use predicate negation and the rule of Quantifi-
cational Objects to derive a representation for (61). Which scope
reading do you derive, negation over universal or universal over
negation? (b) Now use sentential negation instead of predicate
negation. Which scope reading do you derive now? (c) Does the
theory we have developed so far account for the scope ambiguity
in (61)?

6.6.2 Negative Concord

It is possible for a single sentence to contain both verbal negation
and a negative indefinite such as nobody. In mainstream Ameri-
can English, such a sentence would have a double negation (DN)
reading as shown in (62).

(62) Greta didn’t see nobody.
¬¬∃x .see(g, x) (DN)

In a context where it was just asserted that Greta saw nobody, this
sentence could be used to deny that claim, as in: No, Greta didn’t
see nobody; Greta saw somebody.

Assume that see nobody denotes a predicate that holds of z if
there is no individual that z saw (using the rule of Quantificational
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Objects):

(63) saw nobody↝λz .¬∃x .see(z, x)

We then derive the formula ¬∃x .see(g, x) for Greta saw nobody. If
not contributes negation on top of that, then we derive this double
negation reading compositionally.

However, in many other languages (as well as some dialects of
English) it is possible for a sentence to contain both verbal nega-
tion and a negative indefinite and still maintain a single negation
(SN) reading. This phenomenon is called negative concord. Rus-
sian is an example of languages that has negative concord. In Rus-
sian, negation can be expressed using a negation marker ne that
occurs preverbally:

(64) a. Greta
Greta

spala.
slept

‘Greta slept’
b. Greta

Greta
ne
not

spala.
sleep

‘Greta didn’t sleep.’

An existential claim can be made using the quantifier kogo-to ‘some-
one’:

(65) Greta kogo-to uvidela.
Greta someone saw
‘Greta saw someone’

The negation of this existential claim, the idea that that Greta did
not see anybody, is not expressed simply by adding the prever-
bal negation marker to this sentence. Rather, a negative indefinite
nikogo ‘nobody’ co-occurs with the preverbal negation marker, as
in (66a). The negation marker is obligatory, as shown by the un-
grammaticality of (66b).

(66) Russian
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a. Greta
Greta

ne
not

videla
saw

nikogo.
nobody.

‘Greta didn’t see anybody’ (SN)
b. *Greta

Greta
videla
saw

nikogo.
nobody.

From the perspective we’ve built up so far, such cases present a
puzzle: How is it that from the combination of two negative ele-
ments, only one negation is expressed?

Zeijlstra (2007) proposes that negative elements, such as ver-
bal negation markers and negative indefinites, carry a negation
feature that can be either interpretable ([iNEG]) or uninterpretable
([uNEG]), in the terminology of Minimalist syntax. Negative ele-
ments with interpretable negation features ([iNEG]) are seman-
tically negative; they contribute negation as part of their lexical
semantics. Negative elements with uninterpretable negation fea-
tures ([uNEG]) are semantically non-negative, but their syntactic
negation feature must be checked by an element carrying an in-
terpretable negation feature higher up in the syntactic structure.
A verbal negation marker like Russian ne is semantically negative
if it expresses predicate or sentential negation; otherwise it just
expresses an identity function. A quantifier like Russian nikogo is
semantically negative if it is treated as synonymous with English
nobody, and semantically non-negative if it is just an existential
quantifier like English somebody. In the scope of negation, an ex-
istential quantifier yields the meaning of nobody.

In the case of Russian, Zeijlstra assumes that ne ‘not’ is seman-
tically negative, bearing [iNEG], while nikogo ‘nobody’ is semanti-
cally non-negative (a mere existential quantifier), bearing [uNEG].
Zeijlstra assumes further that nikogo must be in the presence of a
semantically negative item higher in the syntactic structure, be-
cause it carries an uninterpretable negation feature [uNEG] that
must be checked. When the negative quantifier is in object posi-
tion, ne (bearing [iNEG]) is able to fulfill this requirement. Hence
we have the following structure:
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(67)

g

Greta
Greta

λPλx .¬P(x)

ne[iNEG]
not

λx .∃y .see(x, y)

videla nikogo[uNEG]
saw nobody

Exercise 23. Complete the derivation in (67). What sort of reading
do you derive, single or double negation?

Exercise 24. Suppose that nikogo were semantically negative in-
stead. What sort of reading would arise, single negation or double
negation? Answer by means of filling in the following tree.

(68)

g

Greta
Greta

λPλx .¬P(x)

ne[iNEG]
not

λx .¬∃y .see(x, y)

videla nikogo[iNEG]
saw nobody
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Now consider the Russian examples in (69), where nobody ap-
pears in subject position.

(69) Russian

a. Nikto
Nobody

ne
not

spal.
slept.

‘Nobody slept’ (SN)
b. *Nikto

Nobody
spal.
slept.

If nikto is [uNEG] as we have assumed for nikogo, then it requires
an [iNEG] element to be present higher in the tree. On the sur-
face, the verbal negation marker ne is lower in the tree than the
negative indefinite in this case. But if we assume that negation is
interpreted at a sentential level at LF, then at LF, the structure of
(64b) is actually as in (70):

(70)
ne

Greta spala

In that case, since ne is combining with a complete sentence in-
stead of a verb phrase, it would make sense to analyze it as a func-
tion of type ⟨t , t⟩ that inverts the truth value of the input.

(71) ne↝λp .¬p

Hence the LF of Nikto ne spal ‘Nobody slept’ would be as follows:

(72) t

⟨t , t⟩

ne[iNEG]
not

t

⟨⟨e, t⟩, t⟩

nikto[uNEG]
nobody

⟨e, t⟩

spal
sleep
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The LF for Greta ne videla nikogo ‘Greta saw nobody’ would be:

(73) t

⟨t , t⟩

ne[iNEG]
not

t

e

Greta

⟨e, t⟩

videla nikogo[uNEG]
saw nobody

Exercise 25. Complete the derivations in (72) and (73). For both
sentences, provide an English paraphrase of the reading that you
compositionally derive.

Exercise 26. Give a lexical entry for nikogo ‘nobody’ with type
⟨⟨e, t⟩, t⟩, and assume that ne expresses predicate negation, and
is interpreted in its surface position in the tree. Using your lexi-
cal entry, give a translation for the VP videla nikogo (as in Greta
ne videla nikogo). Then give a compositional analysis of (64a),
(64b), (65), and (66a). For both sentences, provide an English
paraphrase of the reading that you compositionally derive.
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6.7 Generalized quantifiers

(This section is under development.)

We have said that every cat translates to the following expres-
sion of type ⟨⟨e, t⟩, t⟩:

(74) every cat↝λP .∀x .Cat(x)→ P(x)

What does this expression denote? There are several equivalent
ways to think about this question. One way is as a function from
predicates to truth values. Taking P to be a variable over predi-
cates, (74) denotes the function that maps those predicates that
apply to every cat to True, and all other predicates to False. This
denotation corresponds to a set of sets of entities: (74) denotes
the set of all sets that contain every cat—that is to say, the set of
all supersets of the set of cats. Writing CAT for the set of cats, and
(as usual) De for the domain of entities, we can write this set as
follows:

(75) {P ⊆De ∶CAT ⊆ P}

Similarly, some dog translates to this:

(76) some dog↝λP .∃x .[Dog(x)∧P(x)]

which denotes the set of all sets that are not dog-free:

(77) {P ⊆De ∶ P ∩DOG /=∅}

We will call these sets everyCat and someDog. They can be visual-
ized as in Figures 6.2 and 6.3.

Let us assume that the noun thing denotes De in every model,
that is, it always denotes the universal property (the predicate that
applies to all entities). (We ignore the fact that in practice it is a bit
odd to refer to people and other animate beings as things.) By re-
placing CAT and DOG with De , we arrive at plausible denotations
for the English words everything and something and the English
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Chapter 9 408 

the set of all sets to which every student belongs. This can be pictorially 
represented as in the following diagram from Dowty, Wall and Peters 
(1981), p. 122. 

(4) [every student] = 

'l 'he checkered circle represents the set of students, and the other circles are 
the other sets to which those students all belong. 

Similarly, we can intcrprct [some student] as the set that contains all the 
scts to which some student or other belongs. This can be pictured as follows: 

(5) [some student] = 

The circle with the hatching represents the set of students, and the other 
circles are the othcr sets to which some student belongs. 

Using set-theoretic notation, we can give the semantic values ofthe NPs 
in question as follows: 

(6) a. [every student] U: [student] 
b. [some student] U: [student] n X#- 0} 

Hence, [ every student] is the set of subsets of the domain U of which the 
students are a subset, and [ some student] is the set of all subsets of U whose 
intersection with the set of students is nonempty. 

We can give a similar characterization for all the NPs that we have 
encountered. In what follows we list a few: 

Figure 6.2: The generalized quantifier everyCat denoted by every
cat. The biggest circle represents the universe of discourse. The
cross-hatched circle represents the set of cats. The other circles
represent some of the sets in the denotation of the generalized
quantifier. The cross-hatched circle must be fully contained in
each of the other circles because they represent properties com-
mon to every cat, that is, supersets of the set of cats.
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Chapter 9 408 

the set of all sets to which every student belongs. This can be pictorially 
represented as in the following diagram from Dowty, Wall and Peters 
(1981), p. 122. 

(4) [every student] = 

'l 'he checkered circle represents the set of students, and the other circles are 
the other sets to which those students all belong. 

Similarly, we can intcrprct [some student] as the set that contains all the 
scts to which some student or other belongs. This can be pictured as follows: 

(5) [some student] = 

The circle with the hatching represents the set of students, and the other 
circles are the othcr sets to which some student belongs. 

Using set-theoretic notation, we can give the semantic values ofthe NPs 
in question as follows: 

(6) a. [every student] U: [student] 
b. [some student] U: [student] n X#- 0} 

Hence, [ every student] is the set of subsets of the domain U of which the 
students are a subset, and [ some student] is the set of all subsets of U whose 
intersection with the set of students is nonempty. 

We can give a similar characterization for all the NPs that we have 
encountered. In what follows we list a few: 

Figure 6.3: The generalized quantifier someDog denoted by some
dog. The biggest circle represents the universe of discourse. The
dashed circle represents the set of dogs. The other circles repre-
sent some of the sets in the denotation of the generalized quanti-
fier. The cross-hatched circle need not be fully contained within
any of the other circles, because they represent properties of some
dogs.
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expressions every thing and some thing. We will call these every-
Thing and someThing:

(78) a. everyThing =de f {P ⊆De ∶De ⊆ P} = {De}
b. someThing =de f {P ⊆De ∶ P ∩De /=∅}

= {P ⊆De ∶ P /=∅}

These sets are, respectively, the singleton set of De , and the set
of nonempty subsets of De . We can understand them as con-
ditions on properties. In order for a property P to be included
in everyThing, it has to be the universal property. In order for P
to be included in someThing, it merely has to be nonempty. In
the same vein, we can represent the generalized quantifiers noTh-
ing, which is denoted by the expressions nothing and no thing;
exactlyTwoThings, which is denoted by exactly two things; and
atLeastTwoThings, which is denoted by at least two things, more
than one thing, and two or more things.

(79) a. noThing =de f {P ⊆De ∶ ∣P ∣ = 0} = {∅}
b. exactlyTwoThings =de f {P ⊆De ∶ ∣P ∣ = 2}
c. atLeastTwoThings =de f {P ⊆De ∶ ∣P ∣ ≥ 2}

This says that for a set P to be included in noThing, it has to be
the empty set; for exactlyTwoThings, it has to contain exactly two
things; and for atLeastTwoThings, it has to contain at least two
things.

Which quantifier does two things denote? It is clear that Two
things are blue implicates Exactly two things are blue, but what is
the status of this implication? Most semanticists take it to be an
implicature, as opposed to an entailment. If this is correct, two
things denotes atLeastTwoThings in (79c). Otherwise, it denotes
exactlyTwoThings in (79b).

Sets of sets of entities like those in (79) are called GENERAL-
IZED QUANTIFIERS. This is because they generalize the standard
quantifiers ∀ and ∃ of first-order logic.

Some generalized quantifiers are FIRST-ORDER DEFINABLE; that
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is, they are the denotations of lambda expressions whose value
descriptions are built up using the rules of first-order logic only.
This includes the denotations of every cat in (74) and some dog
in (76), as well as the quantifiers in (79). Some of these look very
simple:

(80) nothing↝λP .¬∃x .P(x)

Others look quite unwieldy:

(81) exactly two things↝λP .∃x .∃y . ¬(x = y)∧P(x)∧P(y)∧
¬∃z .P(z)∧¬(z = x)∧¬(z = y)

Other generalized quantifiers, such as those denoted by most swans,
most things, one in three cats are not ‘first-order definable’ in the
sense that they cannot be expressed in first-order logic. But they
can be defined in terms of sets:

(82) a. mostSwans =de f {P ⊆De ∶ ∣SWAN∩P ∣ > ∣SWAN−P ∣}
b. mostThings =de f {P ⊆De ∶ ∣P ∣ > ∣De −P ∣}
c. oneInThreeCats =de f {P ⊆De ∶ ∣P ∩CAT∣/∣CAT∣ = 1/3}

The fact that these generalized quantifiers are not first-order de-
finable doesn’t prevent us from defining them in Lλ, since this is
a language of higher-order logic. One way to do this would be to
include numbers into our domains as a new basic type in addi-
tion to entities and truth values, as well as functions from sets of
entities to numbers (like cardinality), operations on numbers (like
/, the division operation), relations between numbers (like >, the
greater-than relation), and meaning postulates that ensure that
all these things behave in the ordinary mathematical sense. But
with all these additions, our logical language Lλ would become
cumbersome. Instead, to keep Lλ simple, we will just regard the
formal definitions in (79) and similar ones below as part of our
meta-language.

The denotations of noun phrases like every cat and most swans
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are built up compositionally, at least from those of the words they
consist of. (It has even been suggested that most is internally com-
plex and can be seen as a combination of the comparative more
and the superlative morpheme -st, which is the same morpheme
that we find on the end of words like tallest and funniest.) So de-
terminers denote functions from nouns (type ⟨e, t⟩) to generalized
quantifiers (type ⟨⟨e, t⟩, t⟩), or in other words, functions of type
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩. We will refer to functions of this type as DETER-
MINER FUNCTIONS or just DETS.

The following translation of every denotes a Det that yields the
generalized quantifier everyCat when applied to the denotation of
cat:

(83) every↝λP ′λP .∀x .P ′(x)→ P(x)

The Det that this denotes is the left-to-right Curried version of
the subset relation. We will refer to this relation as every:

(84) every =de f {⟨P ′,P⟩ ∣ P ′ ⊆ P}

Likewise, the translation of some in (85) denotes the Curried ver-
sion of the relation in (86), which holds between any two sets when
they overlap:

(85) some↝λP ′λP .∃x .P ′(x)∧P(x)
(86) some =de f {⟨P ′,P⟩ ∣ P ′∩P /=∅}

This function maps the denotation of dog to the generalized quan-
tifier someDog. We will refer to it as some. In general, we will
call each Det we discuss by the determiner that denotes it, or that
comes closest to denoting it.

The first argument of a Det is called its RESTRICTOR, and its
second argument, its NUCLEAR SCOPE. The noun that a deter-
miner combines with is called the restrictor of that determiner
because, intuitively, it restricts the attention of the noun phrase
to just those entities to which the noun applies.

Draft January 18, 2024



Function Application 249

In a sentence like Every cat meows, the word every denotes the
Det every, whose restrictor is denoted by cat, and whose nuclear
scope is denoted by meows.3

Unlike ∃ and ∀, some and every do not bind any variables. But
some and every give rise to formulas with the same truth condi-
tions as the first-order logic quantifiers ∃ and ∀:

(87) a. some(λx .Dog(x))(λx .Barks(x))
b. ∃x .Dog(x)∧Barks(x)

(88) a. every(λx .Cat(x))(λx .Meows(x))
b. ∀x .Cat(x)→Meows(x)

So in first-order logic, quantification and variable binding are con-
flated, but in the case of generalized quantifiers they come apart.

The Dets some and every are special not just because they repli-
cate ∃ and∀, but also because they are SORTALLY REDUCIBLE. This
means that they each denote a relationship between two sets that
can be expressed using just the set theoretic operations of inter-
section, union, and complement. These operations correspond
to the propositional logic connectives. This is why we were able
to translate some using ∧ and intersection, and every using→ and
subsethood.

We can test whether a Det is sortally reducible by looking for
paraphrases of determiners where the restrictor is replaced by en-
tity and the nuclear scope incorporates the old restrictor and the
expressions and, or, not, if . . . then (read as the material condi-
tional) and if and only if :

(89) a. Some A is a B⇔
b. Some entity is both an A and a B.

(90) a. Every A is a B⇔
3In the literature, generalized quantifiers are also called Type (1) quantifiers

because they combine with one unary function (their nuclear scope), and Dets
are also called Type (1,1) quantifiers because they combine with two unary func-
tions (their restrictor and their nuclear scope).
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b. Every entity is such that, if it is an A, then it is a B.

A Det that is not sortally reducible is called INHERENTLY SORTAL.
An example is most, which cannot be paraphrased in the required
way:

(91) a. Most As are Bs. /⇔
b. Most entities are such that, if they are As, then they

are Bs.

To illustrate, take A to be the set of swans, and B to be the set of
black entities. In a model where there are 8 white swans, 2 black
swans, and 90 ducks, sentence (91a) is intuitively judged false. But
sentence (91b), with if read as the material conditional, is true,
because each duck makes that the material conditional vacuously
true.

The Dets some and every are examples of Dets called INTER-
SECTIVE and CO-INTERSECTIVE. These two classes of Dets taken
together form the class of sortally reducible Dets. The four sets
that a Det can depend on are represented visually in the Venn di-
agram in Figure 6.4 and labeled A∩B , A−B , B − A, and (A∪B)′,
where A is the restrictor and B is the nuclear scope. The union of
these four sets is called the UNIVERSE OF DISCOURSE. This is the
same as the domain of individuals De .

An INTERSECTIVE Det depends only on A∩B , the intersection
of its restrictor and nuclear scope. For example, some is intersec-
tive because in order to know whether Some As are Bs is true, all
you need to know is something about the set A∩B—in this case,
whether it is nonempty. By contrast, every is not intersective, be-
cause even if you know precisely which entities are in A ∩B , you
don’t yet know whether Every A is a B is true. For that, you would
need to know whether there are any entities in A −B , the set of
entities that are As without being Bs. Is this all you need to know?
This depends on whether Every A is a B has EXISTENTIAL IMPORT,
that is, whether it entails Some A is a B. If so, then you need to
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A−B B − AA∩B

(A∪B)′

Figure 6.4: The four sets that a Det can depend on.

know not only whether A − B is empty, but also whether A ∩ B
is. In his syllogistic logic, Aristotle treated universal quantifiers
as having existential import; in first-order logic, they don’t; and
as for whether this holds in natural language, we come back to it
in Chapter 8. As defined in (84), every is intended to mirror the
behavior of ∀ in first-order logic, and therefore lacks existential
import.

Exercise 27. Define a version of every that has existential import
and call it every∃.

A CO-INTERSECTIVE Det depends on A −B and nothing else.
So every as defined in (84) is CO-INTERSECTIVE, while every∃ as de-
fined in Exercise ?? would be neither intersective nor co-intersective.
As another example,most is neither intersective nor co-intersective,
since in order to know whether most As are Bs one needs to know
something about A∩B and about A−B (namely, whether the first
set has more members than the second).

While some and every differ in which set they depend on, they
have something in common: they depend only on the cardinality
of that set, and not on the identity of its members. A CARDINAL
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Det depends just on the cardinality of A∩B , and a CO-CARDINAL

one depends just on the cardinality of A −B . Some depends on
whether the cardinality of A ∩B is nonzero, and every depends
on whether the cardinality of A−B is zero. Cardinal Dets include
some, a, no, practically no, more than ten, fewer than ten, exactly
ten, about ten, ten or more, between ten and twenty, and so on.
Co-cardinal Dets include every and all but two.

The Det most is neither cardinal nor co-cardinal; it is PROPOR-
TIONAL. A proportional Det depends on the proportion of the car-
dinalities of the sets A∩B and A−B , and on nothing else; for ex-
ample, most depends on whether that proportion is greater than
half. Other proportional Dets are at least half the, ten percent
of the, less than two-thirds of the, etc. Proportional Dets are not
first-order definable.

So far we have seen examples of Dets that depend only on
A ∩B , Dets that depend only on A −B , and Dets that depend on
both. As Fig. 6.4 shows, there are two more sets that Dets could
in principle depend on: B − A, and (A ∪B)′. Dets which do not
depend on B − A are called CONSERVATIVE, and Dets that do not
depend on (A ∪B)′ satisfy EXTENSION. One can prove that the
Dets that satisfy conservativity and extension are just those which
relativize a generalized quantifier. (To RELATIVIZE a generalized
quantifier means to convert it into a determiner which behaves
like the generalized quantifier in question after it combines with
its first argument. For example, the determiner every relativizes
the generalized quantifier everything, assuming that thing ranges
over the entire universe of discourse.) Most semanticists agree
that all Dets denoted by determiners, as well as comparable lexi-
cal items in any natural language, satisfy both conservativity and
extension. This has been proposed as a SEMANTIC UNIVERSAL, a
property that holds across all languages (Barwise & Cooper, 1981).

All determiners we have discussed so far conform to this uni-
versal. What would a Det look like that violates it? One example
is the Det in (92), which violates conservativity but satisfies exten-
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sion:

(92) {⟨A,B⟩ ∣ ∣A∣ = ∣B ∣}

The English word that is perhaps closest in meaning to this Det
is the adjective equinumerous (i.e. of equal number). If it could
be used as a determiner in a sentence like Equinumerous cats are
dogs, to express that there are as many cats as there are dogs, it
would be a counterexample to the conservativity universal. But
this sentence is not grammatical.

As another example, a Det that means the same as some on
universes of discourse with fewer than five elements, and the same
as at least five otherwise, would obey conservativity but would vi-
olate extension.

The following schema can be used to test whether a deter-
miner denotes a conservative Det:

(93) _____ A is/are B iff _____ A is/are A that B.

For example, most denotes a conservative determiner because the
following is a valid statement:

(94) Most dogs bark iff most dogs are dogs that bark.

To better understand what it would mean for a Det not to be con-
servative, consider the word Only:

(95) Only dogs bark iff only dogs are dogs that bark.

This is not a valid statement. The left-hand side may well be false,
but the right-hand side will always be true. For example, in a
model in which dogs and sea lions bark, it is not true that only
dogs bark; but it is always true that only dogs are dogs that bark.

This suggests that the word only does not denote a conserva-
tive Det. If anything, it denotes a Det like the following:

(96) {⟨A,B⟩ ∣ B ⊆ A}
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In the case of this Det, knowing just A∩B and A−B is not enough.
Rather, one would need to know whether B − A is empty. And this
is precisely what the truth of Only As are Bs hinges on.

While the word only bears some resemblance to a determiner,
most linguists do not regard it as such, because it has a wider dis-
tribution than determiners. For example, it composes not only
with nouns as determiners do, but also with verb phrases and noun
phrases:

(97) a. John only read two papers today.
b. Only the postman rang twice.

For similar reasons, other putative counterexamples to the con-
servativity universal such as just and mostly are generally not seen
as genuine.

Formulating crosslinguistic generalizations such as the con-
servativity universal is only one example of the many applications
of generalized quantifier theory in linguistics. Another one is the
distribution of negative polarity items, which we discussed in Chap-
ter 2. Other applications account for the restricted distribution of
noun phrases in various constructions. An example is the EXISTENTIAL-
THERE CONSTRUCTION, a construction which is used to talk about
existence or nonexistence and which consists of the word there,
an inflected form of be, a noun phrase called the PIVOT, and typi-
cally a CODA such as a prepositional phrase. Here are some exam-
ples:

(98) a. There were four men at the table.
b. There is a unicorn in the garden.
c. There was nobody in the building.
d. There are a lot of books regarding this.
e. There were three or more voting members present.
f. There are the same number of students as teachers on

the committee.

The question is which noun phrases can and cannot be used as
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pivots. The following examples are infelicitous.

(99) a. #There was John at the table.
b. #There are most angels in heaven.
c. #There was everybody in the building.
d. #There are both books regarding this.
e. #There were the three or more voting members present.
f. #There are two out of three students on the committee.

(We set aside sentences like There is the problem of the cockroaches
escaping, which present instances of something whose existence
has already been asserted or implied.)

Generalized quantifier theory provides an elegant account of
this problem. As a first approximation, the noun phrases that oc-
cur as pivots in existential-there sentences are just those that are
intersective.

Another linguistic application concerns PARTITIVES, that is, noun
phrases with two determiners separated by the word of. The ques-
tion is which determiners can occur on the left and on the right of
of :

(100) a. two of the students
b. most of these cats
c. half of John’s books
d. some of your cookies
e. each of the five examples

(101) a. ?two of most students
b. *two of each student
c. *none of no tables
d. *half of ten people
e. *the of the five examples
f. *the two of the five examples

The relevant notion is DEFINITENESS. Noun phrases headed by de-
terminers such as the, such as the woman or the moon, are DEF-
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INITE, as opposed to INDEFINITE noun phrases like a star, some
man, or three women. Definite determiners are excluded from the
left of of, but not from the right; in fact, it is sometimes claimed
that it is only definite determiners that can appear on the right
of of. Definiteness is usually described in terms of familiarity and
uniqueness. FAMILIARITY means that the referents of definite noun
phrases have been previously introduced in the discourse (e.g.
the woman refers to a woman previously mentioned or otherwise
made salient), while UNIQUENESS means that there is only one
item matching the description (e.g. the moon works because there
is only one moon). The notion of uniqueness doesn’t work for plu-
ral definites such as the stars or the three little pigs. But it is pos-
sible to define a definite Det in a way that extends to these cases.
We come back to this question in Chapter 8.
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6.8 Toy fragment

So far, we have developed the following toy fragment of English,
consisting of a set of syntax rules, a lexicon, a set of composition
rules, and a set of lexical entries.

Syntax

S → DP VP
S → S CoordP
CoordP → Coord S
VP → V (DP∣AP∣PP∣NegP)
NegP → Neg (VP∣AP)
AP → A (PP)
DP → D (NP)
NP → N (PP)
NP → A NP
PP → P DP

Lexicon

Coord: and, or
Neg: not
V: smiled, laughed, loves, hugged, is
A: Swedish, happy, kind, proud
N: singer, drummer, musician
D: the, a, every, some, no
D: Agnetha, Frida, Björn, Benny,
everybody, somebody, nobody
P: of, with

Composition rules

• Function Application (FA)
Let γ be a tree whose only two subtrees are α and β where:
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– α↝α′ where α′ has type ⟨σ,τ⟩
– β↝β′ where β′ has type σ.

Then
γ↝α′(β′)

• Non-branching Nodes (NN)
If β is a tree whose only daughter is α, where α↝ α′, then
β↝α′.

• Quantificational Objects (QO)
Let γ be a syntax tree whose only two subtrees are α and β

(in any order) where:

– α↝R where R has type ⟨e,⟨e, t⟩⟩
– β↝Q where Q has type ⟨⟨e, t⟩, t⟩.

Then
γ↝λx .Q(λz .R(z)(x))

Lexical entries

• Agnetha↝ a

• smiled↝λx .smiled(x)

• loves↝λyλx . loves(x, y)

• kind↝λx .kind(x)

• is↝λP .P

• with↝λyλx .with(x, y)

• of ↝λx . x

• a↝λP .P

• not ↝λPλx .¬P(x)
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• some↝λPλP ′ .∃x .[P(x)∧P ′(x)]

• no↝λPλP ′ .¬∃x .[P(x)∧P ′(x)]

• every↝λPλP ′ .∀x .[P(x)→ P ′(x)]

• something↝λP .∃x .P(x)

• nothing↝λP .¬∃x .P(x)

• everything↝λP .∀x .P(x)

Exercise 28. Give fully beta-reduced translations at each node of
the following trees. Provide appropriate lexical entries as needed.

(a) S

DP

Riker

VP

snores

(b) S

DP

Riker

VP

V

likes

DP

Crusher

(c) S

DP

Riker

VP

V

is

AP

lazy
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(d) S

DP

Riker

VP

V

is

DP

D

a

NP

drunkard

(e) S

DP

Worf

VP

V

is

PP

P

with

DP

Data

Exercise 29. Give fully beta-reduced translations at each node of
the following trees. Provide appropriate lexical entries as needed.

(a) S

DP

Troi

VP

V

is

AP

A

proud

PP

P

of

DP

Picard
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(b) S

DP

Picard

VP

V

is

NegP

Neg

not

AP

A

lazy

(c) S

DP

D

everyone

VP

V

snores

(d) S

DP

D

every

NP

doctor

VP

V

smokes

(e) S

DP

D

every

NP

man

VP

V

is

DP

mortal
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Exercise 30. Extend the fragment to assign representations in Lλ
to the following sentences. For both sentences, give a parse tree
with a fully beta-reduced representation at each node.

• Björn is a fan of Agnetha.

• Björn is Agnetha’s fan.

The two representations should be equivalent to each other, in
order to capture the fact that the English sentences are.

Exercise 31. Extend the fragment to assign representations in Lλ
to the following sentences so that the following two sentences are
equivalent. For both sentences, give a parse tree with a fully beta-
reduced representation at each node.

• Benny smokes and Benny drinks.

• Benny smokes and drinks.
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7.1 Introduction

In the previous chapter, we built up a first compositional theory
of semantics for a fragment of English, using only one composi-
tion rule: Functional Application. This chapter continues in the
same vein, but we will add two new composition rules: Predicate
Modification and Predicate Abstraction.

Let us begin with an example. At the 2013 trial of economist
Vicky Pryce, the wife of former British Energy secretary Chris Huhne,
the jury asked the judge, Justice Sweeney, the following question:

(1) Can you define what is reasonable doubt?

Justice Sweeney replied:

(2) A reasonable doubt is a doubt which is reasonable.

That this reply does not seem informative was probably part of the
judge’s point.1 But for us, the reply does reveal something about
the entailment patterns that adjectives like reasonable give rise to.

In (2), the adjective reasonable appears twice: in ATTRIBUTIVE

position before the noun doubt, and in PREDICATIVE position after
the auxiliary verb is. Sweeney seems to imply that one can reason

1https://www.bbc.com/news/uk-21521460. Retrieved October 7, 2019.
He went on to say: “These are ordinary English words that the law doesn’t allow
me to help you with beyond the written directions that I have already given.”

https://www.bbc.com/news/uk-21521460


264 Beyond Function Application

from the attributive to the predicative use, and vice versa:

(3) This is a reasonable doubt. (Premise, attributive use)
∴ This doubt is reasonable. (Conclusion, predicative use)

(4) This doubt is reasonable. (Premise, predicative use)
∴ This is a reasonable doubt. (Conclusion, attributive use)

A related, but distinct point is that dropping this adjective when it
occurs in attributive position also results in a valid argument:

(5) This is a reasonable doubt. (Premise)
∴ This is a doubt. (Conclusion)

Lastly, we can reason from the adjective and the noun to their
combination (at least on the judge’s interpretation of reasonable):

(6) This is reasonable. (Premise 1)
This is a doubt. (Premise 2)

∴ This is a reasonable doubt. (Conclusion)

We will abbreviate these three entailment patterns with the fol-
lowing statement:

(7) This is a reasonable doubt iff this is reasonable and this is a
doubt.

There are many other adjectives that give rise to the same entail-
ment pattern:

(8) Frida is a Norwegian millionaire iff Frida is Norwegian and
Frida is a millionaire.

(9) John is a vegetarian farmer iff John is vegetarian and John
is a farmer.

How do we explain entailment patterns like these? A simple an-
swer is that the adjectives (reasonable, Norwegian, and vegetar-
ian) denote sets—the set of all reasonable things, for example—
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and that the nouns (doubt, millionaire, and farmer), just like other
nouns we have seen, denote sets as well—for example, the set of
doubts. A reasonable doubt, then, is something which is in each of
these two sets, or in other words, in their intersection. Adjectives
that combine with nouns in this way are also called INTERSECTIVE

ADJECTIVES.
One of the hallmarks of intersective adjectives is that they make

arguments of the following form valid:

(10) John is a vegetarian farmer.
John is a doctor.

∴ John is a vegetarian doctor.

This is as predicted based on what we have said about the deno-
tation of intersective adjectives: If being a vegetarian farmer is
nothing more and nothing less than being both vegetarian and
a farmer, and being a vegetarian doctor is just being a vegetarian
and being a doctor, then any vegetarian farmer who is also a doc-
tor should count as a vegetarian doctor.

Many adjectives are not intersective. For example, Albert Ein-
stein was not only an outstanding physicist but also an amateur
violinist. The following argument is grammatically parallel to the
one in (10) but not valid:

(11) Einstein is an outstanding physicist.
Einstein is a violinist.

/∴ Einstein is an outstanding violinist.

However, just as with reasonable, dropping the adjective results in
a valid argument:

(12) Einstein is an outstanding physicist.
∴ Einstein is a physicist.

The validity of (12) leads us to conclude that outstanding physicist
denotes a subset of what physicist denotes, just as amateur vio-
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linist denotes a subset of the denotation of violinist. In this sense,
both outstanding and amateur are SUBSECTIVE ADJECTIVES. But
outstanding is not an INTERSECTIVE ADJECTIVE. If it were, then
an outstanding physicist who is also a violinist should also be an
outstanding violinist.

Some phrases appear to be ambiguous between an intersec-
tive and a non-intersective reading. A famous example is beauti-
ful dancer:

(13) Nureyev is a beautiful dancer.

On the intersective reading, this sentence is equivalent to saying
that Nureyev is beautiful and is a dancer (but not necessarily one
who dances beautifully). On the non-intersective reading, this is
equivalent to saying that Nureyev dances beautifully (but is not
necessarily beautiful in other respects). Other examples of the
same kind include old (as in old friend) and big (as in big idiot).

Yet other adjectives are neither intersective nor subsective. This
includes adjectives like alleged, former, wannabe, counterfeit, and
fake. For example, the following reasoning is not valid:

(14) John is an alleged murderer.
/∴ John is a murderer.

The set of alleged murderers will typically include some murder-
ers but not only murderers, so it is not a subset of the set of mur-
derers.

Adjectives like counterfeit, fake, and maybe former are special
among non-subsective adjectives in that they seemingly map sets
to disjoint sets (they are also called PRIVATIVE). For example, while
some alleged murderers really are murderers, no fake gun really
is a gun. Or is it? This depends on which set the noun gun is
taken to denote: either the set of real guns, or the set of real and
fake guns taken together. If the following entailment is valid, that
would suggest that only real guns are included:
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(15) This is a fake gun.
∴ This is not a gun.

On the other hand, if only real guns are included, then it is not
clear why sentences like the following have nontrivial meanings:

(16) This gun is fake.

(17) Is this gun real or fake?

We will not settle this issue here.
Among our goals in this chapter will be to expand our frag-

ment of English in a manner that allows us to capture the entail-
ments that various types of adjectives give rise to. As we will see,
the composition rule that we introduce for intersective adjectives
(Predicate Modification) will also be applicable to relative clauses
as in the representative who Sandy called. But confronting rela-
tive clauses will lead us to develop an additional composition rule
(Predicate Abstraction) that can be applied more broadly, in par-
ticular to the analysis of quantifiers in object position. The rest of
this chapter takes on each of these topics in turn.

7.2 Adjectives

The logical counterpart of intersection is conjunction. From the
conjunction [A∧B] we can reason to A and to B and back, so us-
ing conjunction to translate sentences with attributively-used in-
tersective adjectives will explain their entailment patterns. (Here
we translate the demonstrative This with a constant this, as if it
was a proper name. We do this for convenience only and it should
not be taken too seriously. We discuss the semantics of demon-
stratives in Chapter 12.)

(18) This is a reasonable doubt.
reasonable(this)∧doubt(this)

(19) This is reasonable.
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reasonable(this)
(20) This is a doubt.

doubt(this)

We will treat outstanding and other subsective adjectives as func-
tions from sets to subsets. To do so, we rely on a higher-order
function term outstandingAs of type ⟨⟨e, t⟩,⟨e, t⟩⟩. For any type
⟨e, t⟩ expression P , outstandingAs(P) is a new expression of type
⟨e, t⟩.

In order to ensure that outstandingAs denotes a function from
sets to subsets, and thus that ‘x is an outstanding P ’ entails ‘x is
a P ’, we can stipulate that the following formula must be true in
every model:

(21) ∀P∀x .outstandingAs(P)(x)→ P(x)
(For every set P , every outstanding P-individual is a P-

individual.)

What we have written in (21) is not part of any lexical entry; it is a
constraint that every model must satisfy. This kind of assumption
is what Montague called a MEANING POSTULATE. Another exam-
ple of a meaning postulate would be a constraint requiring that
every bachelor is Male, no matter the circumstances. This kind of
constraint is a way of capturing the fact that being male is part of
what it means to be a bachelor (hence the term ‘meaning postu-
late’). What is encoded in (21) is that being P is part of what it
means to be ‘outstanding as a P ’.

Non-subsective adjectives like alleged can be treated in the
same way as subsective adjectives except without a meaning pos-
tulate like this. Without this meaning postulate, no entailment
from sentences of the form ‘x is an [adjective] [noun]’ to ‘x is a
[noun]’ is predicted.

With this in place, let us assume the following translations (where
↝ signifies the translation in question):
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(22) Einstein is an outstanding physicist.
↝ outstandingAs(physicist)(e)

(23) Einstein is a physicist.
physicist(e)

Using these assumptions, we can explain why Einstein is an out-
standing physicist implies Einstein is a physicist: The formula in
(23) follows logically from the formula (22), together with the mean-
ing postulate in (21). (The corresponding entailment for non-
subsective adjectives is blocked because the meaning postulate
is absent in those cases.)

Now, suppose we take Einstein is outstanding to mean that
Einstein is outstanding in some salient respect; then its transla-
tion would be as follows:

(24) Einstein is outstanding.
outstandingAs(P)(e)

This translation contains a free variable P , whose interpretation
needs to be specified by the contextually supplied assignment func-
tion. (This is just one of several potentially viable ways to treat
adjectives like outstanding.) This captures the fact that being out-
standing as a physicist does not entail being outstanding uncon-
ditionally, at least not in every context.

Exercise 1. Explain how the treatment of outstanding given above
blocks the inference from Einstein is an outstanding physicist to
Einstein is an outstanding violinist.

Having translated our sentences into logic, we have accounted
for the entailment relations between them. But how do we make
this translation compositional? Let us first consider intersective
adjectives, since these are the simplest case, and then see what
needs to change so we can account for other types of adjectives.
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In the previous chapter, we considered sentences with adjectives
and nouns like Björn is kind and Agnetha is a singer, treating kind
and singer as type ⟨e, t⟩. So we know how to derive truth condi-
tions compositionally for (19) and (20).

But we do not yet have the tools to analyze sentences like This
is a reasonable doubt). In this sentence, the two expressions rea-
sonable and doubt are sisters in the tree, but neither one denotes
a function that has the denotation of the other in its domain, so
Function Application cannot be used to combine them. So far, we
have no other rules that could be of use. A situation like this is
called a TYPE MISMATCH. Type mismatches occur when two sister
nodes in a tree have denotations that are not of the right types for
any composition rule to combine them.

(25) NP
???

A
⟨e, t⟩

λx .reasonable(x)

reasonable

NP
⟨e, t⟩

λx .doubt(x)

doubt

At this point, one might try and adopt a different denotation
for reasonable, one that can be applied directly to doubt. This de-
notation would expect a predicate like doubt, and return a new
predicate that holds of individuals that are both reasonable and in
the set denoted by the input predicate. Such an expression would
be of type ⟨⟨e, t⟩,⟨e, t⟩⟩. That is, its input type and its output type
are the same.

(26) reasonable↝λP .λx .[reasonable(x)∧P(x)]

This expression avoids the type mismatch in (25):
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(27) NP
⟨e, t⟩

λx .[reasonable(x)∧doubt(x)]

A
⟨⟨e, t⟩,⟨e, t⟩⟩

λPλx .[reasonable(x)∧P(x)]

reasonable

NP
⟨e, t⟩

λx .doubt(x)

doubt

We will call this second translation for reasonable a MODIFIER and
its type a MODIFIER TYPE. In Chapter 11, we will encounter an-
other category that can be analyzed as having modifier types: ad-
verbs.

The drawback of this translation is that it does not work smoothly
for intersective adjectives in predicative position:

(28) This is reasonable.

Here the modifier-type translation above leads to a type mismatch:

(29) S

DP
e

this

This

VP
???

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .[reasonable(x)∧P(x)]

reasonable

So the modifier type analysis causes problems for adjectives in
predicative position. We adopted it to solve the type mismatch in
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attributive positions, where the adjective applies to a noun. But in
predicative position, there is no noun for the adjective to apply to.
The type of the identity function denoted by is is the same as that
of reasonable, so the two don’t combine. Even if we ignored is or
allowed it to apply to functions of arbitrary types, the resulting VP
denotation would still not be of the right type to combine with the
subject, and it would expect one too many arguments. So at this
point we have considered two translations, and each one works
fine for one position but does not work for the other.

There are at least two ways to resolve this problem. We can (i)
generate two translations for the adjective reasonable (and simi-
larly for other intersective adjectives): one of type ⟨e, t⟩ for pred-
icative positions, and another one of type ⟨⟨e, t⟩,⟨e, t⟩⟩ for attribu-
tive positions. Or (ii), we can give intersective adjectives a sin-
gle translation no matter which position they occur in, and elimi-
nate the type mismatches by introducing a new composition rule.
While the two ways lead to the same result, each one involves tools
that have many other uses beyond adjectives, so we will consider
them both.

To implement option (i) and capture the semantic relation-
ship between attributive and predicative uses of adjectives, we
take one translation to be basic and derive the other one from it
with the help of either a TYPE-SHIFTING RULE or a SILENT OPER-
ATOR. Type-shifting rules and silent operators are theoretical de-
vices that generate additional translations/denotations for a given
constituent. The difference between them is that type-shifting
rules are typically regarded as invisible to the syntactic compo-
nent of the grammar; by contrast, silent operators are generally
assumed to have a reflection in the syntax.

For concreteness, we will take the translations of type ⟨e, t⟩ to
be basic and those of type ⟨⟨e, t⟩,⟨e, t⟩⟩ to be derived. The ba-
sic type ⟨e, t⟩ is the right one for predicative positions, as we have
seen in the previous chapter for analogous sentences to This doubt
is reasonable. For attributive positions (reasonable doubt), we will
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now derive translations of type ⟨⟨e, t⟩,⟨e, t⟩⟩. If we use a silent op-
erator MOD to generate derived translations, we will represent this
as follows:

(30) A
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .[reasonable(x)∧P(x)]

⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩
λP ′λP .λx .P ′(x)∧P(x)

MOD

A
⟨e, t⟩

λx .reasonable(x)

reasonable

where MOD is an unpronounced word. Alternatively, we can use
the following type-shifting rule to equivalent effect:

Type-Shifting Rule 1. Predicate-to-modifier shift (MOD)
If α↝α′, where α′ is of type ⟨e, t⟩,
then α↝ λP .[α′(x)∧P(x)] (as long as P and x are not free
in α′; in that case, use different variables of the same type).

We will represent the application of this rule in the syntax tree
like this:

(31) A
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .reasonable(x)∧P(x)
⇑MOD

A
⟨e, t⟩

λx .reasonable(x)

reasonable
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Our notation uses the upwards-facing double arrow ⇑ in order to
capture the intuition that the type-shifting operation induces a
transformation of the denotation.

Exercise 2. We could go the other way around in principle, and
take ⟨⟨e, t⟩,⟨e, t⟩⟩ as the basic type and ⟨e, t⟩ as the derived type.
This requires introducing either a silent operator with a trivial
translation such as λx.x = x, which denotes the set of all individ-
uals, or a type shifting rule with the same effect. Specify what the
type shifting rule would look like.

Having looked at type-shifting rules and silent operators, we
now turn to option (ii), i.e. assuming that all intersective adjec-
tives have translations of a single type, and eliminating type mis-
matches via a new composition rule. Again for concreteness, we
will take that type to be ⟨e, t⟩. This means that we need to ad-
dress the type mismatch that occurs in attributive positions such
as reasonable doubt, as we saw in (25). Our new rule is called Pred-
icate Modification, though Intersective Modification would per-
haps be a more fitting name. It takes two predicates of type ⟨e, t⟩,
and combines them into a new predicate also of type ⟨e, t⟩. The
new predicate holds of anything that satisfies both of the old pred-
icates:

Composition Rule 4. Predicate Modification (PM)
If:

• γ is a tree whose only two subtrees are α and β

• α↝α′

• β↝β′

• α′ and β′ are of type ⟨e, t⟩
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Then:
γ↝λu .[α′(u)∧β′(u)]

where u is a variable of type e that does not occur free in α′ or β′.

This gives us the following analysis for the NP reasonable doubt:

(32) NP
⟨e, t⟩

λx .[reasonable(x)∧doubt(x)]

A
⟨e, t⟩

λx .reasonable(x)

reasonable

NP
⟨e, t⟩

λx .doubt(x)

doubt

With this in place, the rest of the derivation proceeds as before.

Exercise 3. Consider the sentence John is a vegetarian farmer.
Give two different analyses of the sentence, one using the
Predicate-to-modifier shift, and one using Predicate Modifica-
tion. Give your analysis in the form of a tree that shows for each
node, the syntactic category, the type, and a fully beta-reduced
translation. (Feel free to use the Lambda Calculator for this.)

Exercise 4. Identify the types of the following expressions:

(a) λxλy . in(y, x)

(b) λx . x

(c) λx .city(x)
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(d) texas

(e) λy . in(y,texas)

(f) λ f . f

(g) λyλx .Fond-of(x, y)

Assume:

• x and y are variables of type e, and f is a variable of type
⟨e, t⟩.

• Any constant that appears with an argument list of length
1 (e.g. city) is a unary predicate, and any constant that ap-
pears with an argument list of length 2 (e.g. in) is a (Curried)
binary predicate.

• Any constant that appears without an argument list (e.g.
texas) is type e.

The following exercises are adapted from Heim & Kratzer (1998).

Exercise 5. In addition to the ones given above, adopt the follow-
ing lexical entries, using the same assumptions about types as in
the previous exercise:

1. cat↝λx .cat(x)

2. city↝λx .city(x)

3. gray↝λx .Gray(x)

4. gray2↝λPλx .Gray(x)∧P(x)

5. in↝λyλx . in(x, y)
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6. in2↝λyλPλx .P(x)∧ in(x, y)

7. fond↝λyλx . fondOf(x, y)

8. fond2↝λyλPλx .P(x)∧ fondOf(x, y)

9. Joe↝ joe

10. Texas↝ texas

11. Kaline↝ kaline

12. Lockhart↝ lockhart

For each of the trees below, provide a fully beta-reduced transla-
tion at each node, and state the type of the expression.

(a) S

DP

Joe

VP

V

is

PP

P

in

DP

Texas

(b)
S

DP

Joe

VP

V

is

AP

A

fond

PP

of DP

Kaline
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(c) S

DP

Kaline

VP

V

is

DP

D

a

N

cat

(d) S

DP

Lockhart

VP

V

is

DP

D

a

NP

N

city

PP

P

in

DP

Texas
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(e) S

DP

Kaline

VP

V

is

DP

D

a

NP

NP

NP

A

gray

NP

cat

PP

P

in

DP

Texas

AP

A

fond

PP

P

of

DP

Joe

(f) S

DP

Kaline

VP

V

is

DP

D

a

NP

NP

NP

A

gray2

NP

cat

PP

P

in2

DP

Texas

AP

A

fond2

PP

P

of

DP

Joe
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Exercise 6. Frida is a former millionaire does not entail Frida is a
millionaire and *Frida is former. In this sense, former is a non-
intersective modifier. Which of the following are non-intersective
modifiers? Give examples to support your point.

(a) deciduous

(b) presumed

(c) future

(d) good

(e) mere

Exercise 7. In Russian, there is a morphological alternation be-
tween two forms of adjectives, a LONG FORM and a SHORT FORM.
For example, the short form of the adjective ‘good’ is xoroša (fem-
inine) or xoroš (masculine), and the long form is xorošaja (fem-
inine) or xorošij (masculine). As discussed by Siegel (1976), the
two forms have different syntactic distributions. In attributive po-
sitions (modifying a noun), only the long form is possible:

(33) a. Èto
this

byla
was

xoroša-ja
good-LONG

teorija.
theory

‘This was a good theory.’
b. *Èto

this
byla
was

xoroša
good.SHORT

teorija.
theory

But in predicative positions, both forms are possible:
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(34) a. Èta
this

teorija
theory

byla
was

xoroša-ja.
good-LONG

‘This theory was good.’
b. Èta

this
teorija
theory

byla
was

xoroša.
good.SHORT

‘This theory was good.’

(35) a. Naša
our

molodež’
youth

talantliva-ja
talented-LONG

i
and

trudoljubiva-ja.
industrious-LONG

‘Our youth are talented and industrious.’
b. Naša

our
molodež’
youth

talantliva
talented.SHORT

i
and

trudoljubiva.
industrious.SHORT

‘Our youth is talented and industrious.’

Construct an analysis (including lexical entries, any type-shifting
rules you wish to assume, syntactic rules, and perhaps additional
constraints) that accounts for this contrast. You may wish to in-
clude a lexical entry for the -LONG suffix and/or the -SHORT suf-
fix. Provide derivation trees for each of the grammatical sentences
provided in this exercise, and explain why the ungrammatical sen-
tence is ruled out.

7.3 Relative clauses

We turn now to another construction that uses the rule of Predi-
cate Modification, namely relative clauses. Recall that Judge Sweeney
defined the construction in (36a), which involves an attributive
use of the adjective reasonable, in terms of (36b), which involves a
predicative use of the same adjective:

(36) a. reasonable doubt
b. doubt which is reasonable
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The expression which is reasonable is a relative clause. Both rea-
sonable and which is reasonable serve to restrict the set of doubts
under consideration to a subset that are reasonable. Suppose we
assume that which is reasonable denotes a set: the set of reason-
able things. Then, it can combine via Predicate Modification with
doubt to produce an expression that is equivalent to reasonable
doubt.

Other relative clauses can be treated as set-denoting expres-
sions as well. Consider:

(37) woman who Björn loves

This expression characterizes any individual who has the follow-
ing two properties: (i) she is a woman; (ii) Björn loves her. In other
words, this expression denotes (the characteristic function of) the
intersection between the set of women and the set of individuals
that Björn loves. Such an interpretation can be derived compo-
sitionally if we assume that the relative clause who Björn loves is
translated as an expression of type ⟨e, t⟩:

λx . loves(b, x)

woman is translated as λx .woman(x). Since both woman and
who Björn loves translate to expressions of type ⟨e, t⟩, they can
combine via Predicate Modification, like so:

λx .[woman(x)∧ loves(b, x)]
⟨e, t⟩

λx .woman(x)
⟨e, t⟩

woman

λx . loves(b, x)
⟨e, t⟩

who Björn loves

This expression captures the fact that a woman who Björn loves is
both a woman and an individual loved by Björn.
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The question now becomes how we can compositionally de-
rive translations like this for relative clauses. As we have seen, the
verb loves is transitive, so in ordinary, so-called ‘canonical’ sen-
tences of English, this verb is followed by an object. But in this
case, the relative pronoun who, which intuitively corresponds to
the object of the verb, appears at the left edge of the relative clause
who Björn loves.

One way of understanding the connection between who and
the object of loves is by assuming that there are (at least) two levels
of syntactic representation, one where who occupies the canoni-
cal object position immediately following the verb (the ‘Deep Struc-
ture’ of 1960s Chomskyan syntax), and another where it has moved
to its so-called ‘surface position’ (the ‘Surface Structure’). Under
this view, wh- words like who (along with which, where, what,
etc.) do not disappear entirely from their original positions; they
leave a TRACE signifying that they once were there. (Contempo-
rary theories of syntax often use the term UNPRONOUNCED COPY

for a related notion that plays essentially the same role for pur-
poses of semantics.) The syntactic structure of the relative clause
after movement would then be:

CP

whoi C′

C S

DP

Björn

VP

V

loves

DP

ti

The subscript i on who represents an INDEX, which allows us to
link the wh- word to its base position. It can be instantiated as
any natural number, such as 1, 3, or 47, so long as it is the same
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as that of the trace. The element ti is a TRACE of movement, and
because the wh-word and the trace bear the same index, we say
that the two expressions are CO-INDEXED. It is the job of syntax,
rather than semantics, to ensure that all relative pronouns are co-
indexed with their traces.

The category label CP stands for ‘Complementizer Phrase’, be-
cause it is the type of phrase that can be headed by a complemen-
tizer in relative clauses (see below). The wh- word occupies the
so-called ‘specifier’ position of CP (sister to C′).2 In this structure,
the C position is thought to be occupied by a silent version of the
complementizer that. We hear the complementizer that instead
of the relative pronoun who in, for example, woman that Björn
loves.3

To explain the fact that that and which cannot co-occur in

2The term ‘specifier’ comes from the X -bar theory of syntax, where all
phrases are of the form [X P (specifier) [X ′ [X (complement) ] ] ]. See for example
Carnie (2013, Ch. 6).

3One reason to think that the word that is not of the same category as relative
pronouns such as who or which is that only relative pronouns participate in so-
called ‘pied-piping’:

(i) a. good old-fashioned values [CP on which we used to rely]
b. *good old-fashioned values [CP on that we used to rely]

This contrast can be understood under the assumption that which originates as
the complement of on, and moves together with it, while that is generated in
its surface position. Furthermore, the complementizer that is not found only in
relative clauses; it also serves to introduce other finite clauses, as in John thinks
that Mary came. Moreover, in some languages, relative pronouns can actually
co-occur with complementizers (Carnie, 2013, Ch. 12). One example is Bavarian
German (Bayer, 1984, p. 24):

(ii) I
I

woaß
know

ned
not

wann
when

dass
that

da
the

Xavea
Xavea

kummt.
comes

‘I don’t know when Xavea is coming’

The possibility of their co-occurrence provides additional evidence for the idea
that relative pronouns like who and complementizers like that occupy distinct
positions in relative clauses.
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English, we assume that either the relative pronoun or the com-
plementizer that is deleted, in accordance with the ‘Doubly-Filled
Comp Filter’ (Chomsky & Lasnik, 1977), the principle that either
the relative pronoun or that must be silent in English.4

The same kind of movement is thought to occur in a relative
clause like who likes Agnetha or which is reasonable, in which it
is the subject, rather than the object, that is extracted. In such
relative clauses, the trace occurs in subject position:

(38) CP

whichi C′

C

that

S

DP

ti

VP

V

is

AP

reasonable

In this tree, the relative pronoun which is co-indexed with a trace
in the subject position for the embedded auxiliary verb is.5 Be-
cause the movement changes only the underlying structure and
not the sequence of words that is pronounced, this kind of move-
ment is called STRING-VACUOUS MOVEMENT.

These syntactic assumptions lay the groundwork for a seman-
tic treatment of relative clauses on which they function much like
adjectival modifiers. The key assumptions are the following:

4See Carnie (2013, Ch. 12) for a more thorough introduction to the syntax of
relative clauses.

5While the trace theory is widely used in linguistics at the time of writing,
some minimalist theories of movement postulate unpronounced copies instead
of traces (Fox, 2002). For a recent proposal how to integrate this “copy theory” of
movement with compositional semantics, see Pasternak (2020).
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• Relative clauses are formed through a movement operation
that leaves a trace.

• Traces are translated as variables.

• A relative clause is interpreted by introducing a lambda op-
erator that binds this variable.

Which variable does a trace like t3 correspond to? Recall that
in Lλ we have an infinite number of variables in stock. For every
natural number i and every type τ, we have a variable of the form
vi . A trace may in principle correspond to a variable of any type.
But in the cases we are considering at the moment, it works best
to assume that the traces are of type e.

In the compositional system we are setting up here, a trace
with a given index always will be translated as a variable of type
e with the same index. For example, the trace t7 would be inter-
preted as x7:

t7↝ x7

This technique will allow the trace and the associated relative pro-
noun to be linked up in the semantics, as we will choose a match-
ing variable for the lambda expression to bind when we reach the
co-indexed relative pronoun in the tree.

The denotation of the variable x7 will then depend on an as-
signment; recall from our definition of the semantics of variables
in Lλ that:

Jx7KM ,g = g(x7)
Since traces are translated as variables, and variables are inter-
preted using assignment functions, traces ultimately get their de-
notation from assignment functions.6

We have thus arrived at a new composition rule:

6Contrast Heim & Kratzer’s (1998) rule, given in a direct interpretation style,
where an assignment function decorates the denotation brackets: Jαi K

g
= g(i).

Here the difference between direct and indirect interpretation becomes bigger
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Composition Rule 5. Pronouns and Traces Rule
If α is an indexed trace or pronoun, αi ↝ xi

We have called it the ‘Pronouns and Traces Rule’ because it will
also be used for pronouns; for example:

he7↝ x7

We will see more on the pronoun side of this in Section 7.5.7

With these assumptions, we derive the representation

loves(b, x1)

for Björn loves t1:

S
t

loves(b, x1)

DP
e
b

Björn

VP
⟨e, t⟩

λx . loves(x, x1)

V
⟨e,⟨e, t⟩⟩

λyλx . loves(x, y)

loves

DP
e

x1

t1

than mere substitution of square brackets for squiggly arrows: In indirect inter-
pretation, we translate pronouns and traces as logical variables. Note that the
meta-language still contains its own variables in Heim and Kratzer’s style, and
these can be bound by lambda operators, as in Jloves himi K

g
=λx . x loves g(i).

Here, variables like x appear on the right-hand side and variables like ‘himi ’ ap-
pear on the left-hand side.

7The idea of treating traces and pronouns as variables is rather controversial;
see Jacobson (1999) and Jacobson (2000) for critique and alternatives.
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The translation corresponding to this S node, loves(b, x1), is of
type t . Suppose that the complementizer that is an identity func-
tion of type ⟨t , t⟩, so that↝ λp . p, where p is a variable of type t .
So the relative clause that Björn loves t1 has the same translation,
of type t . How does the relative clause end up with a denotation
of type ⟨e, t⟩? In particular, how do we reach our goal, according
to which the relative clause ends up with a translation equivalent
to λx . loves(b, x)?

We can achieve this by assigning the relative clause an inter-
pretation in which a lambda operator binds the variable x1, thus:

λx1 . loves(b, x1)

In principle, the trace might have any index, so we need to know
which variable to let the lambda operator bind. We can do this
with the help of the index of the relative pronoun. The rule of
Predicate Abstraction (also called Lambda Abstraction or Func-
tional Abstraction), triggered by the presence of an indexed rela-
tive pronoun, turns the appropriate variable from a free one into
a bound one:

Composition Rule 6. Predicate Abstraction
If

• γ is a syntax tree whose only two subtrees are αi and β

• αi is a terminal node carrying the index i

• β↝β′

• β′ is an expression of any type

Then γ↝λxi .β′

where the index on αi and xi is the same.

In this rule, the terminal nodeαi does not contribute anything
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other than an index. For this reason, we assume that it carries
neither a denotation nor a type, unlike all other terminal nodes.

This gives us the following analysis of the relative clause, with
γ corresponding to the CP node, αi to the sibling node of C′, and
β to the C′ node:

(39) CP
⟨e, t⟩

λx1 . loves(b, x1)

who1 C′
t

loves(b, x1)

C
⟨t , t⟩
λp . p

that

S
t

loves(b, x1)

DP
e
b

Björn

VP
⟨e, t⟩

λx . loves(x, x1)

V
⟨e,⟨e, t⟩⟩

λyλx . loves(x, y)

loves

DP
e

x1

t1

We have reached our goal! The relative clause that Björn loves de-
notes the property of being loved by Björn. Because it translates to
an expression of type ⟨e, t⟩, it can combine via Predicate Modifica-
tion with woman, giving the property of being in the intersection
between the set of women and the set of individuals who Björn
loves.

It is important to understand the difference between the de-
notations of the C′ and CP nodes. The C′ node is of type t , so it de-
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notes a truth value. Whether it denotes True or False depends on
what individual the assignment function g assigns to the variable
x1. If that individual is among the individuals loved by Björn, the
node denotes True, otherwise False. The CP node is of type ⟨e, t⟩,
so it denotes a set of individuals, namely all those individuals that
are loved by Björn. Unlike C′, the CP node has a denotation that
does not depend on the assignment function g .

Using the same tools, the phrase doubt which is reasonable
can be given an analysis that accords with Judge Sweeney’s intu-
itions:
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(40) NP
⟨e, t⟩

λx .[doubt(x)∧ reasonable(x)]

N
⟨e, t⟩

λx .doubt(x)

doubt

CP
⟨e, t⟩

λx1 .reasonable(x1)

which1 C′
t

reasonable(x1)

C
⟨t , t⟩
λp . p

that

S
t

reasonable(x1)

DP
e

x1

t1

VP
⟨e, t⟩

λx .reasonable(x)

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨e, t⟩

λx .reasonable(x)

reasonable

Under this analysis, a doubt which is reasonable is something that
is both a doubt and reasonable.

According to the assumptions we have made, a relative pro-
noun such as who or which is never assigned a denotation. The
same applies to its silent counterpart in relative clauses that lack
overt relative pronouns (whether the complementizer is pronounced,
as was illustrated in (39) for the woman that Björn loves, or not,
as in the woman Björn loves). Rather, the contribution of a rela-
tive pronoun to the semantic composition of the clause lies in the
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fact that it triggers the rule of Predicate Abstraction, which gives a
denotation for a tree. Thus, relative pronouns don’t have a deno-
tation of their own, even though their presence affects the deno-
tation of the constituents that contain them. An expression like
this is called SYNCATEGOREMATIC. In contrast, CATEGOREMATIC

expressions carry denotations of their own. Most expressions dis-
cussed in this book are categorematic.

Exercise 8.
(a) For each of the labelled nodes in the following tree, give: i) the
type; ii) a fully beta-reduced translation to Lλ, and iii) the compo-
sition rule that is used at the node.

8
NP

7
NP

man

6
CP

who1 5
C’

4
that

3
S

1
DP

t1

2
VP

left

(b) You are not asked to give a type for who1. Why not? Hint: Use
the word ‘syncategorematic’.
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Exercise 9. Traditional grammar distinguishes between restric-
tive and non-restrictive relative clauses. Non-restrictive relative
clauses are normally set off by commas in English, and they can
modify proper names and other individual-denoting expressions.

1. Susan, who I like, is coming to the party.

2. *Susan who I like is coming to the party.

3. That woman, who I like, is coming to the party.

4. The woman who I like is coming to the party.

We have given a treatment of restrictive relative clauses in terms of
Predicate Modification. Would an analysis using Predicate Modi-
fication in the same way be appropriate for non-restrictive relative
clauses? Why or why not?
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Exercise 10. For each node in the following tree, give the type and
a fully beta-reduced translation to Lλ.

NP

NP

man

CP

who1 S

DP

t1

VP

talked PP

P

to

DP

D

the

NP

NP

boy

CP

who2 S

DP

t2

VP

V

visited

DP

him1

You’ll need to make an assumption about the denotation of
the definite article the. For the purposes of this exercise, please
assume that it is translated as follows:

the↝λP . ιx .P(x)

where P is a predicate (type ⟨e, t⟩), and ιx .P(x), read ‘iota x P x’
is an expression of type e that denotes the unique satisfier of P
(assuming there is one). So the type of the translation for the is
⟨⟨e, t⟩,e⟩. We will justify this analysis in greater detail in Chapter
8.
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7.4 Quantifiers in object position

7.4.1 Quantifier raising

Everybody loves Björn should be translated as:

(41) ∀x . loves(x,b)

and Björn loves everybody should be translated as:

(42) ∀x . loves(b, x)

The first case, with the quantifier in subject position, can be de-
rived compositionally using the tools that we have:

∀x . loves(x,b)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx . loves(x,b)
⟨e, t⟩

λy .λx . loves(x, y)
⟨e,⟨e, t⟩⟩

loves

b
e

Björn

But the case with the quantifier in object position (Björn loves ev-
erybody) cannot be. Observe what happens when we try:
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∀x . loves(b, x)
t

b
e

Björn

???

λy .λx . loves(x, y)
⟨e,⟨e, t⟩⟩

loves

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

The transitive verb is expecting an individual, so the quantifier
phrase cannot be fed as an argument to the verb. And the quanti-
fier phrase is expecting an ⟨e, t⟩-type predicate, so the verb cannot
be fed as an argument to the quantifier phrase. It is rather an em-
barrassment that this does not work. It is clear what this sentence
means!

According to the assumptions we made so far, everybody trans-
lates as:

(43) λP .∀x .P(x)

The appropriate value for P here would be a function that holds
of an individual if Björn loves that individual:

(44) λx . loves(b, x)

If we could separate out the quantifier from the rest of the sen-
tence, and let the rest of the sentence denote this function, then
we could put the two components together and get the right trans-
lation:

(45) [λP∀x .P(x)](λx . loves(b, x))

This beta-reduces to:

(46) ∀x . loves(b, x)
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Exercise 11. Before we continue working through the problem
raised by Björn loves everybody, check your understanding by sim-
plifying the following expression step-by-step:

[λQ .∀x[Linguist(x)→Q(x)]](λx1 .Offended(j, x1))

Tip: Use the ‘scratch pad’ function in the Lambda Calculator.

We can get the components we need to produce the right de-
notation using the rule of Quantifier Raising. QUANTIFIER RAIS-
ING is a syntactic transformation that moves a quantifier (an ex-
pression of type ⟨⟨e, t⟩, t⟩) to a position in the tree where it can
be interpreted, and leaves a DP trace in its previous position. In
terms of 1970’s syntax, this transformation occurs not between
Deep Structure and Surface Structure, but rather between Sur-
face Structure and another level of representation called Logical
Form (LF), as discussed in more detail below. At Logical Form,
constituents do not necessarily appear in the position where they
are pronounced, but they are in the position where they are to be
interpreted by the semantics. Thus the structure in (47a) is con-
verted to the Logical Form representation (47b):

(47) a. S

DP

Björn

VP

V

loves

DP

everybody

Draft January 18, 2024



298 Beyond Function Application

b. S

DP

everybody

LP

1 S

DP

Björn

VP

V

loves

DP

t1

The index 1 in the syntax tree plays the same role as a relative pro-
noun like which in a relative clause: It triggers the introduction
of a lambda expression binding the variable corresponding to the
trace.

The derivation works as follows. Predicate Abstraction is used
at the node we have called LP for ‘lambda P’; Function Application
is used at all other branching nodes. The LP node is posited for se-
mantic purposes, and as far as we know, there is no syntactic ev-
idence to support it; it provides a place for the Predicate Abstrac-
tion rule to apply. LP was introduced by Heim & Kratzer (1998)
and has been widely adopted, though the name we use is specific
to our textbook.
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(48) ∀x . loves(b, x)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx3 . loves(b, x3)
⟨e, t⟩

3 loves(b, x3)
t

b
e

Björn

λx . loves(x, x3)
⟨e, t⟩

λy .λx . loves(x, y)
⟨e,⟨e, t⟩⟩

loves

x3

e

t3

The Quantifier Raising solution to the problem of quantifiers
in object position was originally developed in a syntactic theory
with several levels of representation:

• Deep Structure (DS): Where active sentences (John kissed
Mary) look the same as passive sentences (Mary was kissed
by John), and wh- words are in their original positions. For
example, Who did you see? is You did see who? at Deep
Structure.

• Surface Structure (SS): Where the order of the words cor-
responds to what we see or hear (after e.g. passivization or
wh-movement)

• Phonological Form (PF): Where the words are realized as
sounds (after e.g. deletion processes)
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• Logical Form (LF): The input to semantic interpretation (af-
ter e.g. Quantifier Raising)8

Transformations map from DS to SS, and from SS to PF and LF:

DS

SS

LF PF

This is the so-called ‘T-model’, or (inverted) ‘Y-model’ of Govern-
ment and Binding theory, motivated originally by Wasow (1972)
and Chomsky (1973). Since the transformations from SS to LF
happen “after” the order of the words is determined, we do not
see the output of these transformations. These movement opera-
tions are in this sense COVERT.

Many other transformational generative theories of grammar
have been proposed over the years (see Lasnik & Lohndal 2013 for
an overview), and many of these are also compatible with the idea
of Quantifier Raising; the crucial thing is that there is an interface
with semantics (such as LF) at which quantifiers are in the syntac-
tic positions that correspond to their scope, and there is a trace
indicating the argument position they correspond to. Quantifier
Raising is not an option in non-transformational generative theo-
ries of grammar such as Head-Driven Phrase Structure Grammar
(Pollard & Sag, 1994) and Lexical-Functional Grammar (Bresnan,
2001); other approaches to quantifier scope are taken in conjunc-
tion with those syntactic theories.

8‘Logical Form’ refers here to a level of syntactic representation. A Logical
Form is thus a natural language expression, which will be translated into Lλ.
It is natural to refer to the Lλ translation as the ‘logical form’ of a sentence, but
this is not what is meant by ‘Logical Form’ in this context.
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Exercise 12. Produce a translation into the lambda calculus for
Beth speaks a European language. Start by drawing the LF, assum-
ing that a European language undergoes Quantifier Raising. As-
sume also that the indefinite article a can denote what some de-
notes, that European and language combine via Predicate Modifi-
cation, and that speaks is a transitive verb of type ⟨e,⟨e, t⟩⟩.

Exercise 13. Some linguist offended every philosopher is ambigu-
ous; it can mean either that there was one universally offensive
linguist or that for every philosopher there was a linguist, and
there may have been different linguists for different philosophers.
Give an LF tree for each of the two readings, and specify the trans-
lation into Lλ at every node of your trees.

Exercise 14. Provide a fragment of English with which you can de-
rive truth conditions for the following sentences:

1. Every conservative congressman smokes.

2. No congressman who smokes dislikes Susan.

3. Susan respects no congressman who smokes.

4. Susan dislikes every congressman.

5. Some congressman from every state smokes.

6. Every congressman respects himself.

The fragment should include:

• a set of syntax rules
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• lexical entries (translations of all of the words into Lλ)

• composition rules (Function Application, Predicate Modi-
fication, Predicate Abstraction, Pronouns and Traces Rule,
Non-branching Nodes)

Then, for each sentence:

• draw the syntactic tree for the sentence

• for each node of the syntactic tree:

– indicate the semantic type

– give a fully beta-reduced representation of the deno-
tation in Lλ

– specify the composition rule that you used to compute
it

If the sentence is ambiguous, give multiple analyses, one for each
reading.

You can use the Lambda Calculator for this exercise.

7.4.2 A type-shifting approach

Quantifier Raising is only one possible solution to the problem
of quantifiers in object position. Another approach is to inter-
pret the quantifier phrase in situ, i.e., in the position where it is
pronounced. In this case one can apply a type-shifting operation
to change either the type of the quantifier phrase or the type of
the verb. This latter approach, using flexible types for the expres-
sions involved, adheres to the principle of “Direct Composition-
ality”, which rejects the idea that the syntax first builds syntactic
structures which are then sent to the semantics for interpretation
as a second step. (Direct compositionality is not to be confused
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with direct interpretation—two totally different ideas.) With di-
rect compositionality, the syntax and the semantics work in tan-
dem, so that the semantics is computed as sentences are built up
syntactically, as it were. Jacobson (2012) argues that this is a priori
the simplest hypothesis and defends it against putative empirical
arguments against it.

Type-shifting rules can target either the quantifier, making it
into the sort of thing that could combine with a transitive verb, or
the verb, making it into the sort of thing that could combine with a
quantifier. On Hendriks’s (1993) system, a type ⟨e,⟨e, t⟩⟩ predicate
can be converted into one that is expecting a quantifier for its first
or second argument, or both.

Another approach uses so-called Cooper Storage, which in-
troduces a storage mechanism into the semantics (Cooper, 1983).
This is done in Head-Driven Phrase Structure Grammar (Pollard
& Sag, 1994). In brief, the idea is that a syntax node is associated
with a set of quantifiers that are “in store”. When a node of type t
is reached, these quantifiers can be “discharged”.

Exercise 15. What is the problem of quantifiers in object position,
and what are the main approaches to solving it? Explain in your
own words.

Hendriks defines a general type-shifting schema called ARGU-
MENT RAISING (not because it involves “raising” of a quantifier
phrase to another position in the tree — it doesn’t — but because
it “raises” the type of one of the arguments of an expression to a
more complex type). We will focus on one instantiation of this
schema, called OBJECT RAISING, defined as follows. Here and in
the following, we will use x for variables associated with the sub-
ject, and y for those associated with the object, wherever possible.
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Type-Shifting Rule 2. Object raising (RAISE-O)
If an English expression α is translated into a logical expres-
sion α′ of type ⟨e,⟨a, t⟩⟩, for any type a, then α also has a
translation of type ⟨⟨⟨e, t⟩, t⟩,⟨a, t⟩⟩ of the following form:

λQ⟨⟨e,t⟩,t⟩λxa .Q(λy .α′(y)(x))

(unless Q, y or z occurs in α′; in that case, use different vari-
ables).

Using this rule, a sentence like Björn loves everybody can be
analyzed as follows, without quantifier raising:

(49) S
t

∀y . loves(b, y)

DP
e
b

Björn

VP
⟨e, t⟩

λx .∀y . loves(x, y)

V
⟨⟨⟨e, t⟩, t⟩,⟨e, t⟩⟩

λQ⟨⟨e,t⟩,t⟩λx .Q(λy . loves(x, y))
⇑RAISE-O

⟨e,⟨e, t⟩⟩
λyλx . loves(x, y)

loves

DP
⟨⟨e, t⟩, t⟩

λP .∀y .P(y)

everybody
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The translation of the VP node can be computed from those of the
V and object DP nodes through three successive beta reductions:

(50) [λQ .λx .Q(λy . loves(x, y))](λP .∀y .P(y))
≡λx .[[λP .∀y .P(y)](λy . loves(x, y))]
≡λx .∀y .[[λy . loves(x, y)](y)]
≡∀y . loves(x, y)

In some situations, it can be useful to apply type-shifting to
subject arguments. One such situation stems from scope ambigu-
ities as they occur in sentences with two quantifiers such as Some-
body loves everybody. Lifting the verb using the Object Raising rule
and then combining it with its two arguments results in the sur-
face scope reading, i.e. the reading in which the subject existential
takes scope over the object universal. This is shown in the follow-
ing tree, where subscripts indicate the types of the variables.

(51) t
∃x∀y . loves(x, y)

⟨⟨e, t⟩, t⟩
λP .∃x .P(x)

Somebody

⟨e, t⟩
λx .∀y . loves(x, y)

⟨⟨⟨e, t⟩, t⟩,⟨e, t⟩⟩
λQ⟨⟨e,t⟩,t⟩λx .Q(λy . loves(x, y))

⇑RAISE-O

⟨e,⟨e, t⟩⟩
λyλx . loves(x, y)

loves

⟨⟨e, t⟩, t⟩
λP .∀y .P(y)

everybody

But what about the inverse scope reading, in which the object uni-
versal takes scope over the subject existential? It turns out that in
order to generate this reading we need to lift both arguments of
the verb. To do so, we first need to raise the subject, with a rule
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we will call Subject Raising. We then lift the verb using the Subject
Raising and then the Object Raising rule and combine the result-
ing doubly-lifted verb with its two arguments.

Type-Shifting Rule 3. Subject raising (RAISE-S)
If an English expression α is translated into a logical expres-
sionα′ of type ⟨a,⟨e, t⟩⟩ for any type a, thenα also has a trans-
lation of type ⟨a,⟨⟨⟨e, t⟩, t⟩, t⟩⟩ of the following form:

λyaλQ⟨⟨e,t⟩,t⟩ .Q(λxe .α′(y)(x))

(unless y , Q or x is free in α′; in that case, use different vari-
ables).

This rule is the mirror image of the Object Raising rule above, in
the sense that this rule alters the way that a transitive verb com-
bines with its subject argument, while the Object Raising rule al-
ters the way it combines with its object argument.

We are now ready to generate the inverse scope reading of
Somebody likes everybody. To do so, we apply Subject Raising to
the verb, followed by Object Raising:
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(52) t
∀y∃x . loves(x, y)

⟨⟨e, t⟩, t⟩
λP .∃x .P(x)

Somebody

⟨⟨⟨e, t⟩, t⟩, t⟩
λQ⟨⟨e,t⟩,t⟩ .∀y .Q(λx . loves(x, y))

⟨⟨⟨e, t⟩, t⟩,⟨⟨⟨e, t⟩, t⟩, t⟩⟩
λQ′⟨⟨e,t⟩,t⟩λQ⟨⟨e,t⟩,t⟩ .Q′(λy .Q(λx . loves(x, y)))

⇑RAISE-O

⟨e,⟨⟨⟨e, t⟩, t⟩, t⟩⟩
λyλQ⟨⟨e,t⟩,t⟩ .Q(λx . loves(x, y))

⇑RAISE-S

⟨e,⟨e, t⟩⟩
λyλx . loves(x, y)

loves

⟨⟨e, t⟩, t⟩
λP .∀y .P(y)

everybody

Exercise 16. What happens if we apply Object Raising to the verb,
followed by Subject Raising? Draw a derivation at the same level
of detail as the tree in (52). Can the resulting reading also be gen-
erated in a simpler way?

In fact, Subject Raising and Object Raising are both instances
of a general type-shifting schema that Hendriks defines. (The fol-
lowing explanation is advanced, and the rest of the current sub-
section 7.4.2 can be skipped. Nothing in the remainder of the
book depends on it.) The general schema is as follows: If an ex-
pression has a translationα′ of type ⟨Ð→a ,⟨b,⟨Ð→c , t⟩⟩⟩, whereÐ→a and
Ð→c are possibly null sequences of types, then that expression also
has translations of the following form, whereÐ→x andÐ→z stand for
possibly null sequences of arguments of the same length asÐ→a and
Ð→c respectively:
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(53) λÐ→x Ð→a λQ⟨⟨b,t⟩,t⟩λ
Ð→z Ð→c [Q(λyb[α′(Ð→x )(y)(Ð→z )])]

(unless x, y , z, or Q occur in α′; in that case, just use different
variables of the same type).

This schema works in the following way, for a verb α that ex-
pects at least one argument, the “targeted argument” as we will
call it. In the following examples, this argument will be of type e,
but more generally it could be of any type; this is why the schema
uses b instead of e. The sequencesÐ→x andÐ→z represent whatever
arguments the verb applies to before and after it combines with
the targeted argument. Suppose now that a verb has combined
with all of the arguments in Ð→x and that its next argument is not
of the expected type (say e) but rather it is a quantifier Q of type
⟨⟨e, t⟩, t⟩. In that situation, the verb cannot apply to Q; and if there
are more arguments coming up, i.e. ifÐ→z is nonempty (for exam-
ple, if Q is in object position,Ð→z will contain a slot for the subject),
Q cannot apply to the verb either. Hendriks’ schema adjusts the
entry and type of the verb α by replacing e with ⟨⟨e, t⟩, t⟩ so that
α can apply to Q. The adjusted entry provides α with all of the
arguments inÐ→x , then with a fresh variable y , and finally with all
remaining arguments inÐ→z (such as the subject); and finally it ab-
stracts over y and uses the quantifier Q to bind it. This makes
sure that the adjusted entry behaves just as the original entry for
α would do if the quantifier Q was raised above α and all of its
arguments, leaving a trace corresponding to the variable y .

To illustrate, the Object Raising rule above results from apply-
ing Hendriks’s schema with Ð→x and Ð→a as null (because the verb
does not apply to any arguments before it combines with the ob-
ject), b as a (corresponding to the type of the object – typically
type e),Ð→z as z (because after combining with the object, the verb
still expects to apply to the subject), andÐ→c as e (because the sub-
ject is of type e):

(54) λQ⟨⟨a,t⟩,t⟩λze[Q(λya[α′(y)(z)])]
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To get the Subject Raising rule, we instantiate Hendriks’ schema
above by settingÐ→x to x,Ð→a to a, b to e, and z andÐ→c to null:

(55) λxaλQ⟨⟨e,t⟩,t⟩[Q(λye[α′(x)(y)])]

These formulas are identical to those in the Object Raising and
Subject Raising rules above, except that we have renamed some
bound variables for consistency with the rest of the book.

7.5 Pronouns

Recall that the Pronouns and Traces Rule tells us that if α is an
indexed trace or pronoun, αi ↝ xi . Thus pronouns and traces are
interpreted in the same manner: as variables. In this section, we
will try and justify this assumption.

Exercise 17. Using the Pronouns and Traces Rule, give transla-
tions at every node for the following tree (ignoring the semantic
contribution of gender):

S

DP

She3

VP

V

loves

DP

her5

Can all pronouns be interpreted as variables? For example, if
someone were to point to Cruella De Vil, and say:

(56) She is suspicious.

then this occurrence of she would refer to Cruella De Vil. But one
could point to Ursula and say the same thing, in which case she
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would refer to Ursula. One doesn’t have to point, of course; if Ur-
sula is on TV then she is sufficiently salient for the same utterance
to pick her out. Alternatively, one could raise Ursula to salience by
talking about her:

(57) Ursula is usually mean, but offered to help Ariel. She is
suspicious.

In this case, the pronoun is used ANAPHORICALLY, as it has a lin-
guistic antecedent. In the previous cases, the pronoun is used DE-
ICTICALLY.

Both the deictic and the anaphoric uses can be accounted for
under the following hypothesis (to be revised):

Hypothesis 1. All pronouns refer to whichever individual is most
salient at the moment when the pronoun is processed.

(We are setting aside gender and animacy features for the mo-
ment.) Individuals can be brought to salience in any number of
ways: through pointing, by being visually salient, or by being raised
to salience linguistically.

The problem with Hypothesis 1 is that there are some pro-
nouns that don’t refer to any individual at all. The following ex-
amples all have readings on which it is intuitively quite difficult to
answer the question, “Who/what does the pronoun refer to?”

(58) No woman blamed herself.

(59) Neither man thought he was at fault.

(60) Every boy loves his mother.

So not all pronouns are referential. It is sometimes said that
No woman and herself are “coreferential” in (58) but this is strictly
speaking a misuse of the term “coreferential”, because coreference
implies reference.
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Exercise 18. Give your own example of a pronoun that could be
seen as referential, and your own example of a pronoun that could
not be seen as referential.

The pronouns in examples (58)-(60) can be analyzed as bound
variables.9 For example, (58) should be translated as:

(61) ¬∃x .[woman(x)∧Blamed(x, x)]

Another reason to unify the semantics of pronouns and traces is
that there are certain cases where pronouns behave almost identi-
cally to traces. For instance, regarding the late U.S. Supreme Court
Justice Ruth Bader Ginsburg, it was once remarked:

(62) This is an older woman who everyone listens to when she
speaks.

The alternative with an unpronounced trace (*...who everyone lis-
tens to when speaks) would have been ungrammatical; inserting
the pronoun she rescues the sentence (although perhaps not fully;
many speakers find examples like this less than fully acceptable).
Pronouns in such configurations are called RESUMPTIVE PRONOUNS.
The semantic contribution of a resumptive pronoun is exactly like
the semantic contribution of a trace: as a variable that is bound by
a lambda operator. Thus

who everyone listens to when she speaks

9The terms free and bound are also used to describe pronouns in BINDING

THEORY, the area of syntax that deals with different types of potentially referring
expressions like proper names and various types of pronouns. The way that the
terms free and bound are used in that context involves slightly different, albeit
related, senses. Here, we use a quite traditional sense of those terms, applying
to variables of a formal language that contains variable binders. A variable is
free within an expression if it is not bound by any binder within that expression.
In syntax, a noun phrase is free in a given expression if it does not have an an-
tecedent within that expression.
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denotes the property of being an x such that everyone listens to x
when x speaks.

Another example in which pronouns are interpreted very much
like traces is with such-relatives, as in:

(63) any book such that Mary read it

These cases can be treated much like relative clauses, using Pred-
icate Abstraction. The trigger for the abstraction in this case is
such, which is coindexed with a pronoun rather than a trace. (In
this case, the pronoun would not be considered a resumptive pro-
noun because there’s no sense in which it is overtly realizing a
trace of movement; such is analyzed as originating in its surface
position rather than in the position of the pronoun.) For example,
in (63), there is coindexation between such and it. The analysis
works as follows:10

10Keep in mind that x is a distinct variable from x1.
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(64) NP
⟨e, t⟩

λx .[book(x)∧ read(m, x)]

NP
⟨e, t⟩

λx .book(x)

book

AP
⟨e, t⟩

λx1 .read(m, x1)

such1 CP
t

read(m, x1)

C
⟨t , t⟩
λp . p

that

S
t

read(m, x1)

DP
e
m

Mary

VP
⟨e, t⟩

λx .read(x, x1)

V
⟨e,⟨e, t⟩⟩

λy .λx .read(x, y)

read

DP
e

x1

it1

Exercise 19. Give the types and a fully beta-reduced logical trans-
lation for every node of the following tree (from Heim & Kratzer
1998, p. 114).
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NP

NP

man

AP

such2 CP

C

that

S

DP

Ed

VP

V

read

DP

D

the

NP

NP

book

CP

which1 S

DP

he2

VP

V

wrote

DP

t1

For the definite article, assume the analysis described in Exercise
10.

In light of this evidence, let us consider the possibility that
pronouns should always be treated as bound variables.

Hypothesis 2. All pronouns are translated as bound variables.

What this means is that whenever a pronoun occurs in a sentence,
the sentence translates to a formula in which the variable corre-
sponding to the pronoun is bound by a variable-binder (a lambda
or a quantifier).
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One reason not to treat all pronouns as bound variables is that
there are some ambiguities that depend on a distinction between
free and bound interpretations. For example, in the movie Ghost-
busters, there is a scene in which the three Ghostbusters Dr. Pe-
ter Venkman, Dr. Raymond Stantz, and Dr. Egon Spengler (played
by Bill Murray, Dan Aykroyd, and Harold Ramis, respectively), are
in an elevator. They have just started their Ghostbusters busi-
ness and received their very first call, from a fancy hotel in which
a ghost has been making disturbances. They have their proton
packs on their back and they realize that they have never been
tested.

(65) Dr Ray Stantz: You know, it just occurred to me that we
really haven’t had a successful test of this equipment.
Dr. Egon Spengler: I blame myself.
Dr. Peter Venkman: So do I.

There are two readings of Peter Venkman’s quip, a sympathetic
reading and a reading on which he is, as usual, being a jerk. On the
SLOPPY reading (the sympathetic reading), Peter blames himself.
On the STRICT reading (the asshole reading), Peter blames Egon.
The strict/sloppy ambiguity exemplified in (65) can be explained
by saying that on one reading, we have a bound pronoun, and
on another reading, we have a referential pronoun. The anaphor
so picks up the the property ‘x blames x’ on the sloppy reading,
which is made available through Quantifier Raising thus:
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(66) S

DP

I

LP

1 S

DP

t1

VP

V

blame

DP

myself 1

The strict reading can be derived from an antecedent without Quan-
tifier Raising:

(67) S

DP

I

VP

V

blame

DP

myself 1

This suggests that pronouns are sometimes bound, and some-
times free. We have not said anything about how to interpret deic-
tic pronouns like I, but let us assume that it picks out Peter Venkman
just as his name would in the relevant context of utterance. For
the reflexive pronoun myself, let us assume that it comes with an
index that determines which variable it maps to in the represen-
tation language, like other pronouns.

Exercise 20. Which reading — strict or sloppy — involves a bound
interpretation of the pronoun? Which reading involves a free in-
terpretation?

These considerations lead us to Hypothesis 3 (also advocated
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by Heim & Kratzer (1998)): All pronouns are interpreted as vari-
ables, either free or bound. For example, in the following exam-
ples, the pronoun in the sentence is interpreted as a free variable;
it doesn’t end up bound by any quantifier:

(68) S

DP

She1

VP

V

is

A

nice

(69) S

DP

John

VP

V

hates

DP

D

his1

NP

father

But in the following examples, the pronoun is translated as a bound
variable (on the most prominent reading):

(70) S

DP

Every boy

LP

1 S

DP

t1

VP

V

loves

DP

D

his1

NP

father
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(71) S

DP

John

LP

1 S

DP

t1

VP

V

hates

DP

D

his1

NP

father

Whether or not Quantifier Raising takes place will be reflected in
a free/bound distinction in the logical translation. The denota-
tion of the sentences with free pronouns will depend on an as-
signment.

Exercise 21. What empirical advantages does Hypothesis 3 have
over Hypotheses 1 and 2? Summarize briefly in your own words,
using example sentences where necessary.

This way of treating pronouns suggests that assignment func-
tions can be thought of as being provided by the discourse con-
text. So a sentence that translates to a logical formula containing
a free variable can make an interpretable contribution to a dis-
course. Still, it is not appropriate to say She left! in a context where
your interlocutor has no idea who she refers to. This observation
could be captured via a requirement that the context specify an in-
terpretation for any free variables that occur in the representation
of the meaning of a given text. If she translates as x3, for exam-
ple, and this variable remains unbound, then the context should
determine an assignment function that provides a value for x3.
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7.6 Indexicality

So far in this chapter, we have talked about various uses of per-
sonal pronouns like he and she. We modeled both as variables,
which can be either free or bound. In the case that they are free,
we suggested that their value comes from an assignment function
that is determined by context. In this section, we discuss indexi-
cal pronouns like I and you. For these, Kaplan (1977) advocates a
slightly different kind of analysis.

An INDEXICAL may be defined as “a word whose referent is de-
pendent on the context of use, which provides a rule which deter-
mines the referent in terms of certain aspects of the context” (Ka-
plan, 1977, 490). Examples include I, my, you, that, this, here, now,
tomorrow, yesterday, actual, and present. Kaplan distinguishes be-
tween two sorts of indexicals:

• DEMONSTRATIVES: indexicals that require an associated demon-
stration. Examples: this and that.

• PURE INDEXICALS: indexicals for which no demonstration
is required. Examples: I, now, here, tomorrow (although
here has a demonstrative use: “In two weeks, I will be here
[pointing]”.11

Kaplan’s logic provides a mechanism for interpreting pure indexi-
cals. It’s very simple: Along with a model and an assignment func-
tion, Kaplan proposes to interpret logical expressions relative to a
context of uutterance.

The CONTEXT OF UTTERANCE determines who is speaking, to
whom, when, where, and in what possible world.

c = ⟨sp, ad , t , l oc, w⟩
11There is some controversy surrounding how the referents of indexicals are

determined: by rules linking expressions to objective features of context, or by
speakers’ intentions.
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The truth of a formulaφ in Kaplan’s logic is determined by a model
M , an assignment function g , and a context of utterance c:

JφKM ,g ,c = ...

The assignment function g , as before, determines the values of
any free variables in φ. So expressions that are translated as vari-
ables get their meaning from the assignment function g , rather
than the context of utterance c.

In Kaplan’s ‘logic of indexicals’, there are certain special index-
ical constants, whose semantics are defined in terms of the con-
text of utterance:

(72) a. JiKM ,g ,c = sp(c)
b. JuKM ,g ,c = ad(c)
c. JnowKM ,g ,c = t(c)
d. JhereKM ,g ,c = loc(c)

English pure indexicals can then be mapped to these special in-
dexical constants like so:

(73) a. I ↝ i
b. you↝ u
c. now↝ now
d. here↝ here

Hence these pure indexical terms get their denotation from the
context of utterance, rather than an assignment function. Note:
Although the reference of these terms is not fixed (since it varies
by context), the logical expressions i, u, now, and here are classi-
fied as constants rather than variables, since they don’t get their
meaning from an assignment function.

Kaplan’s motivations for proposing this analysis had to do with
sentences like It is necessary that I am here now, which is arguably
not true in most cases (if not all), even though I am here now
is arguably ‘always true’ in some sense – true whenever uttered.
We will return to the interaction between indexicals and necessity
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modals in the final chapter, where we move from an extensional
semantics to intensional semantics. But it is not just in relation
to intensional semantics that indexicality plays a role, and we will
encounter several examples of this in the following chapters.
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8 ∣ Presupposition

8.1 Introduction

There are no dubstep albums by Gottlob Frege (the logician who
lived in the 1800s); he just did not make any. So the following sen-
tence is not true:

(1) There are dubstep albums by Frege.

Its negation, naturally, is true:

(2) There are no dubstep albums by Frege.

This is how things usually are; if a sentence is not true, then its
negation is true. But this is not always the case.

The following sentence, in which every combines with dubstep
albums by Frege, is not felt to be true:

(3) Every dubstep album by Frege is famous.

Yet few would assent to its negation, however it is formulated:

(4) a. Not every dubstep album by Frege is famous.
b. It’s not the case the every dubstep album by Frege is

famous.

Thus neither the original sentence nor its negation is felt to be
true. How can this be?
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The answer is that every presupposes the existence of some-
thing satisfying the description it combines with. This presuppo-
sition is inherited by the negation. As Chierchia & McConnell-
Ginet (2000, 28) write, “If A PRESUPPOSES B, then A not only im-
plies B but also implies that the truth of B is somehow taken for
granted, treated as uncontroversial.” Furthermore,

If A presupposes B, then to assert A, deny A, wonder
whether A, or suppose A – to express any of these atti-
tudes toward A is generally to imply B, to suggest that
B is true and, moreover, uncontroversially so. That is,
considering A from almost any standpoint seems al-
ready to assume or presuppose the truth of B; B is part
of the background against [which] we (typically) con-
sider A.

Thus, if A presupposes B, then A, the negation of A, a yes/no ques-
tion targeting A, and a conditional sentence in which A figures as
the antecedent will all presuppose B as well. Observe that the fol-
lowing sentences also imply that Frege made at least one dubstep
album:

(5) Maybe every dubstep album by Frege is famous.

(6) If every dubstep album by Frege is famous, then I must be
out of the loop.

Every one of these sentences shares the implication; this is char-
acteristic of presupposition. In general, sentences that embed the
original sentence under negation, conditionals, and modals are
usually used to test for presuppositions. This is called the FAMILY-
OF-SENTENCES TEST. Sometimes questions are also used, though
these require an extension of the notion of entailment.

One way of thinking about presupposition is as something that
speakers do. For example, someone who speaks of every dubstep
album presupposes that Frege made at least one dubstep album.
What a speaker presupposes is what they take for granted, treating
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it as uncontroversial and known to everyone participating in the
conversation (Stalnaker, 1978). The idea of a sentence presuppos-
ing something can be derived from the speaker-based notion of
presupposition as follows: A sentence A presupposes a sentence
B if uttering A in any given context acts as a signal that the speaker
in that context presupposes B.

We have just given a pragmatic characterization of presuppo-
sition. Alternatively, presupposition can be given a semantic def-
inition. According to the semantic definition, when a sentence
presupposes something, the presupposed content must be true
in order for the sentence to be true or false; otherwise, the sen-
tence just doesn’t make any sense. For example, since (1) is not
true, (3) is arguably neither true nor false. It’s just nonsense, be-
cause it presupposes something false. As Karttunen (1973b, 170)
writes, “There is no conflict between the semantic and the prag-
matic concepts of presupposition. They are related, albeit differ-
ent notions.”

The part of the sentence (word or construction) that carries
this signal that something is being presupposed is called a PRE-
SUPPOSITION TRIGGER. The word every triggers a presupposition
of existence. Another example of a presupposition trigger is the
adverb still, in the sense “up to and including the present”. For
example, if I said (7), I would signal (8) through a presupposition.

(7) Natalie Portman still speaks French.

(8) Natalie Portman spoke French in the past.

Although it is not an ordinary entailment, the relation between
these sentences is arguably some form of entailment; in every sit-
uation where (7) is true, (8) is also true. This can also be shown
using the defeasibility test. But presuppositions differ from ordi-
nary entailments, as you can see from what happens when they
are negated. Suppose we negate (7) as follows:

(9) It’s not the case that Natalie Portman still speaks French.
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This sentence denies that Natalie Portman currently speaks French
but still implies that she spoke French in the past.

In fact, merely supposing that Natalie Portman still speaks French
also yields the implication that she spoke French in the past.

(10) If Natalie Portman still speaks French, then she might en-
joy this poem.

Here we have placed Natalie Portman still speaks French in the
ANTECEDENT position (the ‘if’ part) of a CONDITIONAL statement.
(The ‘then’ part is called its CONSEQUENT.) Normally, material that
is in the antecedent of a conditional is not implied. For exam-
ple, the following sentence does not imply that Natalie Portman
speaks French:

(11) If Natalie Portman speaks French, then she might enjoy
this poem.

The antecedent of a conditional is for ideas that are merely enter-
tained for the purpose of exploring a hypothetical possibility; the
speaker normally does not commit herself to the material here.
But presupposed information still ‘pops out’ from the antecedent
of a conditional, as it were. In other words, the presupposition
PROJECTS from the antecedent of the conditional (and from under
negation).

We see this with questions as well. If someone were to ask,

(12) Does Natalie Portman speak French?

they would not be implying that Natalie Portman spoke French, of
course. And yet:

(13) Does Natalie Portman still speak French?

does imply that Natalie Portman spoke French at some time in the
past. The presupposition projects out of the yes/no question.

In general, presuppositions can be distinguished from entail-
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ments using this PROJECTION TEST, which assesses whether the
inference in question ‘projects’ over negation, from the antecedent
of a conditional statement or over question-formation. What these
environments have in common is that they are ENTAILMENT-CAN-
CELING environments; environments where entailments normally
go to die. But presuppositions thrive in these environments. To
test whether an inference from A to B is an ordinary entailment or
a presupposition, one embeds A in an entailment-canceling en-
vironment, and observes whether the B sentence is still implied.
If so, then the inference projects, and is therefore behaving as a
presupposition.

Here is an example. Example (14a) implies (14b), broadly speak-
ing; anyone who heard (14a) would certainly conclude that (14b)
is true, assuming they trusted the speaker.

(14) a. Kim’s twin sister lives in Austin.
b. Kim has a twin sister.

Does this implication project? Let us apply the projection test.
To do so, we’ll need to embed (14a) in an entailment-cancelling
environment, such as negation, the antecedent of a conditional,
or a maybe statement. Let’s try all three, just to be on the safe side:

(15) a. Negation
Kim’s twin sister doesn’t live in Austin.

b. Antecedent of a conditional
If Kim’s twin sister lives in Austin, then Kim has prob-
ably eaten at Torchy’s Tacos.

c. Maybe
Maybe Kim’s twin sister lives in Austin.

These sentences all imply that Kim has a twin sister. So the infer-
ence projects.

The projection test does not require the projected inference to
have the same properties as an ordinary entailment. Sometimes,
projecting presuppositions are defeasible. For example, the fol-
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lowing example sounds fine to some native speakers:

(16) Kim’s twin sister doesn’t live in Austin, because she doesn’t
have a twin sister.

We will talk about this phenomenon in Chapter 8 under the head-
ing “accommodation”. What matters for the projection test is that
presuppositions remain present in embedded environments such
as negation, whether or not they survive only in a defeasible way.

The decision procedure for distinguishing between the vari-
ous types of implication relations is summarized in Figure 8.1.
Use the defeasibility test to distinguish between entailment and
implicature; use the projection test to distinguish between ordi-
nary entailment and presupposition.

Defeasible and
reinforceable?

Projects?

Ordinary entailment

no

Presupposition

yes
no

Implicature

yes

Figure 8.1: A decision tree for categorizing implications

Exercise 1. Use the projection test to determine whether the fol-
lowing implications are entailments or presuppositions. Explain
how the test supports your conclusion.

(a) The flying saucer came again.
The flying saucer has come sometime in the past.

(b) The flying saucer came yesterday.
The flying saucer has come sometime in the past.
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Exercise 2. Consider the following two sentences.

(17) a. John succeeded in learning to play the guitar.
b. John failed at learning to play the guitar.

Intuitively, both sentences imply that John tried to learn to play
the guitar (18a), but the succeed sentence implies that he did
(18b), and the fail sentence implies that he did not (18c).

(18) a. John tried to learn to play the guitar.
b. John learned to play the guitar.
c. John didn’t learn to play the guitar.

So there are four implications under consideration:

(19) a. (17a) ‘succeed’→ (18a) ‘try’;
b. (17b) ‘fail’→ (18a) ‘try’;
c. (17a) ‘succeed’→ (18b) ‘did’;
d. (17b) ‘fail’→ (18c) ‘didn’t’.

For each of these in turn, determine whether it is an implicature,
an ordinary entailment, or a presupposition. First, determine
whether it is an implicature or an entailment (ordinary or pre-
supposition) using the defeasibility and reinforcement tests, and
then, if it is an entailment, determine whether it is an ordinary en-
tailment or a presupposition using projection from negation, the
antecedent of a conditional, and a yes/no question.

Be sure to include all of the relevant examples, observations,
and reasoning in your answer, and summarize your findings by
saying in general what is entailed, presupposed, and implicated
(if anything), by a sentence of the form X succeeded in Y, and do
the same for X failed at Y.

So far we have mentioned two presupposition triggers: the
quantificational determiner every and the adverb still. Other pre-
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supposition triggers include the quantificational determiners both
and neither, factive adjectives (e.g., glad, annoying), factive verbs
(e.g., know, remember, realize), possessives, exclusives (e.g., only,
merely, sole), and the definite determiner the (also called a defi-
nite article). Here are some examples (where ≫ signifies ‘presup-
poses’):

(20) a. Neither candidate is qualified.
≫ There are exactly two candidates.

b. Ed is glad we won.
≫ We won.

c. Ed knows we won.
≫ We won.

d. Ed’s son is bald.
≫ Ed has a son.

e. Only Ed came.
≫ Ed came.

f. The balcony is lovely.
≫ There is a balcony.

The definite determiner is the presupposition trigger that the the-
ory of presupposition grew up around, so we will spend the next
section reviewing that history, using the definite determiner as a
focal point.

8.2 The definite determiner

So far, we have seen two types for determiners: ⟨⟨e, t⟩,⟨e, t⟩⟩ for
the indefinite determiner a in predicative descriptions such as a
singer in Agnetha is a singer; and ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩ for other deter-
miners. This section motivates a treatment of definite determin-
ers with yet a third type, namely ⟨⟨e, t⟩,e⟩. In a phrase like the
moon, called a DEFINITE DESCRIPTION, the singular definite de-
terminer the takes as input the predicate moon, and returns the
unique individual which satisfies that predicate, if there is one. If
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there is not, then the phrase has an ‘undefined’ denotation. (We
set aside plural definite descriptions like the stars until Chapter
10.)

Recall that definite descriptions often convey uniqueness, as
discussed earlier in Chapter 6 in relation to Generalized Quanti-
fier theory. Suppose that we were in Sweden, and you were not en-
tirely sure who was in the royal family, and in particular whether
there were any princesses, and if there were, how many there were.
Suppose then that someone were to tell you: Guess what! I’m at-
tending a banquet with the princess tonight. You would probably
infer that there is one and only one contextually relevant princess.
(There are actually multiple princesses in Sweden, so a sincere
and well-informed speaker would probably not use the expres-
sion the princess out of the blue. The point is that if someone were
to do so, their utterance would convey that only one is relevant.)
Thus definite descriptions convey EXISTENCE (that there is a rel-
evant princess, in this case), and UNIQUENESS (that there is only
one).

In “On Denoting”, Russell (1905) proposes to analyze definite
descriptions on a par with the quantifiers we analyzed in Chapter
6. He proposes that a sentence like The princess smokes means
‘There is exactly one princess and she smokes’:

(21) ∃x .[princess(x)∧∀y .[princess(y)→ x = y]∧ smokes(x)]

This expression can be read as follows: There exists some x such
that (i) x is a princess, and (ii) every y that is a princess is equal to
x (in other words, there are no princesses other than x), and (iii) x
smokes.

According to this treatment, the definite determiner introduces
an entailment both that there is a princess (existence, part (i) above)
and that there is only one (uniqueness, part (ii) above). The sen-
tence is thus predicted to be false if there are either no princesses
or multiple ones.

Draft January 18, 2024



332 Presupposition

Exercise 3. Read the above formula aloud to yourself and then
write out the words that you said. Which part of this formula en-
sures uniqueness?

Exercise 4.

(a) Give a lexical entry for the that yields the kind of meaning for
The princess smokes that Russell envisions. It should combine
with princess and smokes to yield (21) as a translation. Hint:
Since it introduces an existential quantifier, you might look to
other existential-quantifier-introducing expressions we have
encountered as a model.

(b) What is the type of the under your treatment?

(c) Show this lexical entry in action in the following tree:
S

DP

D

the

NP

princess

VP

V

smokes

Strawson (1950), in a response to Russell titled “On Referring”
and building on some ideas of Frege’s, agrees that definite descrip-
tions signal existence and uniqueness of something satisfying the
description, but he disagrees with Russell’s proposal that these
implications are entailments. His argument centers around so-
called EMPTY DESCRIPTIONS: definite descriptions in which noth-
ing satisfies the descriptive content. For example, since France is
not a monarchy, the king of France is an empty description. Straw-
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son writes,

To say, “The king of France is wise” is, in some sense
of “imply”, to imply that there is a king of France. But
this is a very special and odd sense of “imply”. “Im-
plies” in this sense is certainly not equivalent to “en-
tails” (or “logically implies”).

Putting it another way:1

When a man uses such an expression, he does not
assert, nor does what he says entail, a uniquely exis-
tential proposition. But one of the conventional func-
tions of the definite determiner is to act as a signal
that a unique reference is being made – a signal, not a
disguised assertion.

Strawson argues for this thesis as follows:

Now suppose someone were in fact to say to you with
a perfectly serious air: The king of France is wise. Would
you say, That’s untrue? I think it is quite certain that
you would not. But suppose that he went on to ask
you whether you thought that what he had just said
was true, or was false; whether you agreed or disagreed
with what he had just said. I think you would be in-
clined, with some hesitation, to say that you did not
do either; that the question of whether his statement
was true or false simply did not arise, because there
was no such person as the king of France. You might,
if he were obviously serious (had a dazed, astray-in-
the-centuries look), say something like: I’m afraid you
must be under a misapprehension. France is not a monar-
chy. There is no king of France.

1With “disguised assertion”, Strawson is alluding to Russell’s idea that the
form of a sentence containing a definite description, where the definite descrip-
tion appears as a term, is misleading, and that the quantificational nature of
definite descriptions is disguised by this form.
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Strawson’s observation is that we feel squeamish when asked to
judge whether a sentence of the form The F is G is true or false,
when there is no F. We do not feel that the sentence is false; we
feel that the question of its truth does not arise, as Strawson put
it.

For The king of France is wise, why doesn’t the question of its
truth arise? Because the sentence presupposes something that
is false, namely that there is one and only one king of France.
Only when the presuppositions of a sentence are met can it make
enough sense to be true or false. Otherwise, it is neither true nor
false. In fact, as discussed in Chapter 1, one way of defining pre-
supposition is just in this way:

(22) Semantic definition of presupposition
A presupposes B if and only if:
Whenever A is true or false (as opposed to neither true nor
false), B is true.

The truth values True and False are called CLASSICAL. The idea
here is that a presupposition of a sentence is something that needs
to be true in order for the sentence to even have a classical truth
value, as opposed to being neither true nor false.

Exercise 5. Recall the definition of entailment:

A entails B if and only if:
Whenever A is true, B is true.

Notice how similar this definition is to the semantic definition of
presupposition. Consider the relationship between these two def-
initions. According to these definitions, is semantic presupposi-
tion a species of entailment? Or is it the other way around? Or
neither? Explain your reasoning.

One way of implementing the idea that sentences might be
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neither true nor false is by introducing a third truth value. Under
this strategy, along with ‘true’ and ‘false’, we have ‘undefined’ or
‘nonsense’ as a truth value. Let us use mt (pronounced “hash” or
“undefined”) to represent this undefined truth value. If there is
no king of France, then the truth value of the sentence The king of
France is wise will be mt . In general, when a sentence has a false
presupposition, we call it a PRESUPPOSITION FAILURE. Then the
question becomes how we can set up our semantic system so that
this is the truth value that gets assigned to a sentence with a false
presupposition.

Intuitively, the reason that this sentence is neither true nor
false is that there is an attempt to refer to something that does
not exist. One way of capturing the same intuition is to introduce
a special ‘undefined individual’ of type e. We will adopt this ap-
proach here, using the symbol me to denote this individual in our
meta-language. One advantage of doing so is that every expres-
sion has some semantic value or other, so our system can com-
pute a denotation even in case of a presupposition failure. This
symbol is not meant to be introduced as an expression of our log-
ical representation language Lλ (although we could easily add a
corresponding symbol to the representation language); rather we
use me in our meta-language to refer to this ‘undefined entity’
we are imagining, specifying this as the denotation for empty de-
scriptions.2 A definite description of the form the F will denote me

whenever the number of satisfiers of F is not exactly one.
To give a lexical entry for the on which it denotes me unless

the predicate it combines with holds of exactly one individual, we
introduce a new symbol into our logic:

ι

which is the Greek letter ‘iota’. Like the λ symbol, ι can bind a

2Other notations that have been used for the undefined individual include
Kaplan’s (1977) †, standing for a ‘completely alien entity’ not in the set of indi-
viduals, Landman’s (2004) 0, and Oliver & Smiley’s (2013) O, pronounced ‘zilch’.
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variable. Here is an example:

ιx .P(x)

This is an expression of type e. It denotes the unique individual
satisfying P if there is exactly one such individual, otherwise it de-
notes me .

Iota-expressions can be formed with any type; for any vari-
able u, if the type of u is τ, and φ is any formula, then ιu .φ is an
expression of type τ. To make this work, we must assume that ev-
ery type τ, there is an undefined entity of type τ, written mτ. We
assume that for any given type τ, the undefined entity mτ is not a
member of Dτ, the domain of objects of type τ. In making this as-
sumption, we are following the precedent set by LaPierre (1992),
who distinguishes between the set of ‘ordinary meanings’ and the
set of ‘partial meanings’; the undefined entities are part of the lat-
ter but not the former set. Following Haug (2013), we can refer to
Dτ ∪ {mτ} as the FIXED-UP DOMAIN for type τ, and to Dτ as the
CLASSICAL DOMAIN for type τ. We denote the fixed-up domain for
type τ as D+

τ . Under the system we define here, every expression
of type τ is a member of the fixed-up domain for type τ, but the
classical domains play a role in the theory as well.

To add the ι symbol to our logic, first we add a syntax rule pro-
ducing iota-expressions:

Syntax rule: Iota
If φ is an expression of type t , and u is a variable of type τ, then
ιu .φ is an expression of type τ.

The semantics of iota-expressions is defined as follows:

Semantic rule: Iota
If φ is an expression of type t , and u is a variable of type τ,
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Jιu .φKM ,g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d if JφKM ,g[u↦d] =T but

for all d ′ ∈Dτ distinct from d ,JφKM ,g[u↦d ′] = F

mτ otherwise

Here, d and d ′ are meta-variables that range over individuals in
the classical domain Dτ. The semantic rule tells us that the ι oper-
ator picks out the unique value d for the variable u that verifies the
condition φ. If there is no such value, it returns mτ. In essence, ι
encodes the existence and uniqueness conditions, and introduces
mτ when one of these conditions is not satisfied.

Here, we are working within an idealized semantic picture in
which contextual relevance plays no further role once the model
has been fixed. For the purposes of ι, the only thing that matters
is the number of individuals in the model satisfying the scope for-
mula φ.

Exercise 6. Read the semantic rule for ι aloud to yourself and then
write down the words that you said. How does this definition en-
sure that ι expressions are undefined when existence and unique-
ness are not satisfied?

With this formal tool in hand, we can now give a so-called
“Fregean” analysis of the definite determiner as follows (see be-
low for further discussion of why it is called “Fregean”):

(23) the↝λP . ιx .P(x)

Applied to a predicate-denoting expression like λx .moon(x), it
denotes the unique moon, if there is one and only one moon in
the domain of the model.
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(24) DP
e

ιx .moon(x)

D
⟨⟨e, t⟩,e⟩

λP . ιx .P(x)

the

NP
⟨e, t⟩

λx .moon(x)

moon

(25) Jιx .moon(x)KM ,g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d if Jmoon(x)KM ,g[x↦d] =T but
for all d ′ ∈De distinct from d ,

Jmoon(x)KM ,g[x↦d ′] = F

me otherwise

It may be useful to compare the existentially quantified for-
mula ∃x .moon(x) and the term ιx .moon(x). The former is a for-
mula (type t ) and the latter is a term (type e). The existentially
quantified formula states that there is at least one individual that
satisfies moon(x). If there is, its semantic value is True, otherwise
False. The iota term refers successfully only if there is exactly one
individual that satisfies moon(x). If there is, it denotes that indi-
vidual, otherwise me .

A definite description that successfully refers to something will
behave just like a proper name when embedded in a larger sen-
tence. Consider for example:

(26) The moon is spherical.

The definite description the moon, an expression of type e, picks
out the unique moon in the given model, if there is one. Relative to
a model that adheres to our earth-centric worldview and contains
no moons other than that object we call the moon, i.e., Earth’s only
natural satellite, the definite description will successfully refer to
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it. Assuming that spherical is translated as an expression of type
⟨e, t⟩, the sentence is true in a given model M if and only if, ac-
cording to M , the referent of the moon satisfies the predicate de-
noted by spherical. Simple enough.

But what happens if the definite description fails to refer, as
in The king of France is wise? Let us assume that the function de-
noted by wise is a function D+

e to D+
t , and that it maps the unde-

fined individual me to the undefined truth value m. In general, we
assume that function-denoting non-logical constants are STRICT

in this sense, given by LaPierre (1992): They map an undefined
value to an undefined value. Hence, ifα denotes me , thenwise(α)
denotes the undefined truth value m.3 Since (the translation of)
the king of France, in a model that represents the state of the world
today, would have me as its denotation, (the translation of) The
King of France is wise would then have mt as its denotation.

Exercise 7. Using the assumptions above, compute a derivation
for the following tree:

S

DP

D

the

NP

N

king

PP

P

of

DP

France

VP

V

is

AP

A

wise

In the case of the king of France, we have a situation where

3Let us assume furthermore that if an undefined value m⟨σ,τ⟩ applies to an

argument of type σ, then the result is mτ.
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the existence presupposition of the Fregean definite article is vio-
lated; an expression of the form the F where there is no F. A situa-
tion where the uniqueness presupposition is violated would be a
case where there is more than one F. For example, there is more
than one river in France, so The river in France is wide would not
have a defined truth value under this analysis.

This analysis is called “Fregean”, as it captures an intuition
that was expressed earlier by Frege (1892 [reprinted 1948]). One
passage in which Frege’s view on the definite article comes forth
involves a discussion of the expression the negative square root of
4. According to Frege, such an expression, like a proper name, de-
notes an individual (corresponding to type e in modern parlance):

We have here a case in which out of a concept-expression,
a compound proper name is formed, with the help of
the definite article in the singular, which is at any rate
permissible when one and only one object falls under
the concept.

We assume that by “concept-expression”, Frege means an expres-
sion of type ⟨e, t⟩, and that by “compound proper name”, Frege
means “a complex expression of type e”.

To flesh out Frege’s analysis of this example further, let us as-
sume that square root is a RELATIONAL NOUN, with a denotation of
type ⟨e,⟨e, t⟩⟩, following Heim & Kratzer (1998). Let us assume fur-
ther that of makes no contribution to the semantics other than an
identity function of type ⟨e,e⟩. Spelling this out yields the struc-
ture in (27):
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(27) NP
e

D
⟨⟨e, t⟩,e⟩

the

N′

⟨e, t⟩

A
⟨e, t⟩

negative

N′

⟨e, t⟩

N
⟨e,⟨e, t⟩⟩

square root

PP
e

P
⟨e,e⟩

of

NP
e

four

(The treatment of square root as a relational noun is unrelated to
Frege’s analysis of definite descriptions; we include it in the dis-
cussion here only because it figures in the example that Frege uses
in the passage quoted above.)

Now, recall that Frege said that the use of a definite description
like this is “permissible” only if one and only one object falls under
the description (here, being a negative square root of four). What
does Frege mean by “permissible”? One way of formalizing this
idea is that the denotes a function of type ⟨⟨e, t⟩,e⟩ that is only de-
fined for input predicates that characterize one single entity. This
function applies to a predicate, and if there is exactly one satisfier
of that predicate, then the return value is that satisfier. But if there
are zero satisfiers or multiple satisfiers, then the function returns
a special ‘undefined’ value.

Draft January 18, 2024



342 Presupposition

Exercise 8. Compute a derivation for the following tree according
to Frege’s intuitions, translating square root as a constant of type
⟨e,⟨e, t⟩⟩, and four as a constant of type e:

DP

D

the

NP

AP

A

negative

N’

N

square root

PP

P

of

DP

four

Exercise 9. Consider the two following possible parse trees for the
book on the pillow.

(i) DP

the NP

book PP

on DP

D

the

NP

pillow
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(ii) DP

DP

D

the

NP

book

PP

P

on

DP

D

the

NP

pillow
Assume the following lexical entries:

1. book↝λx .book(x)

2. on↝λyλx .on(x, y)

3. pillow↝λx .pillow(x)

Given these lexical entries, which of the trees above, (i) or (ii),
gives the right kind of interpretation for the book on the pillow?

Explain your answer. You will find it helpful to annotate the nodes
with their types (if not their fully beta-reduced translations as
well), and consider the type at the top of the tree.

Exercise 10. Explain how this Fregean treatment of the definite
determiner vindicates Strawson’s intuitions.

Let us consider another example. Beethoven wrote one opera,
namely Fidelio, but Mozart wrote quite a number of operas. So
in a model reflecting this fact of reality, the phrase the opera by
Beethoven has a defined value. But the opera by Mozart does not.
Consider what happens when the opera by Mozart is embedded in
a sentence like the following:

(28) The opera by Mozart is Italian.
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This would have the following translation:

italian(ιx .[opera(x)∧by(x,mozart)])

Assuming that italian (like wise) yields the value m when applied
to an expression whose semantic value is me , this formula will
denote m in a model where there are multiple operas by Mozart.
Here as before, the undefinedness of the definite description “per-
colates up”, as it were, to the sentence level.

Exercise 11. Both The king of France is wise and The opera by
Mozart is Italian have an undefined value relative to the actual
world, but for different reasons. Explain the difference.

The iota operator can be used in the analysis of other phe-
nomena as well. We give one example here: possessives. As men-
tioned above, possessives trigger presuppositions:

(29) Björn loves Agneta’s cat.
≫ Agneta has a cat.

The fact that this inference is a presupposition can be seen via the
projection test; for example, Björn doesn’t love Agneta’s cat also
implies that Agneta has a cat. How might we define possessive-
marking in a way that captures this presupposition? Let us con-
sider first what sort of meaning representation we wish to derive
for the sentence as a whole. We propose the following as a repre-
sentation of the meaning of (29):

(30) loves(b, ιy[cat(y)∧has(a, y)])]

Under this treatment, (29) presupposes not only that Agneta has a
cat, but also that she has exactly one (a common but slightly con-
troversial assumption). To arrive at this formula compositionally,
we propose the following lexical entry for possessive ’s:
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(31) ’s↝λxλP . ιy .P(y)∧has(x, y)

Exercise 12. Draw a derivation tree for example (29) and annotate
each node with its translation and its semantic type, using the lex-
ical entry in (31).

8.3 Presupposition accommodation

Earlier in this chapter, we said that a speaker presupposes some
proposition when they take it for granted, treating it as uncontro-
versial and known to everyone participating in the conversation
(in the COMMON GROUND). For example, suppose you work in an
office and you have no idea whether your boss Malcolm owns any
animals. Then your co-worker tells you:

(32) Malcolm loves his elephant.

You would likely be surprised, and perhaps react with something
like Hey, wait a minute! I didn’t know Malcolm owns an elephant.
This is the sort of reaction that might be expected when a sentence
presupposes content that is not already in the common ground.

But suppose instead that in the same context, your co-worker
tells you:

(33) Malcolm loves his cat.

In this case, you would be more likely to take the information
about his cat in stride, add it to your stock of beliefs about Mal-
colm without raising a fuss. That is to say, you would probably
treat (33) as if it meant something like this:

(34) Malcolm owns a cat, and he loves it.

Now, the diagnostics from Chapter 1 show that the implication
of (32) that Malcolm has an elephant, and the implication of (33)
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that Malcolm has a cat, are (semantic) presuppositions of these
two sentences. And the system we have described so far would
assign them the truth value # if John doesn’t own an animal of
the required kind. If the Hey, wait a minute reaction (cf. von Fin-
tel 2004) is what naturally happens in discourse when a sentence
lacks a classical truth value due to its presuppositions not being
satisfied in the discourse context, then (32) and (33) should elicit
similar responses. But their effects on the discourse are quite dif-
ferent.

PRESUPPOSITION ACCOMMODATION is a process by which hear-
ers update their beliefs with the presupposed content of a sen-
tence after hearing it, so that the sentence can be understood in
a revised context where its presuppositions hold in the common
ground. It’s as if the presupposed content were asserted, silently
and just immediately before the sentence, so that the presupposi-
tion gets promoted, in effect, to an entailment. Some speakers feel
that (34) has no presupposition: in contexts where John doesn’t
own a cat, it is simply judged false. Through accommodation, the
presupposition of (33) has changed from a test whose failure leads
to undefinedness (the truth value #) to one whose failure leads to
falsehood (the truth value F).

Evidently, some presupposed content is easier to accommo-
date than others. A speaker can easily slip a pet cat into the com-
mon ground without much notice, but a pet elephant is more con-
spicuous. Plausibility plays a role in accommodation, in other
words.

When trying to assess whether some bit of meaning is a pre-
supposition or not, it is important to keep in mind the possibility
of accommodation. In the case of definite descriptions, accom-
modation helps an advocate of the Frege/Strawson analysis to ex-
plain why the following example from Russell is not a contradic-
tion:

(35) The king of France isn’t bald – there is no king of France!
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If the first sentence always had the ‘undefined’ truth value relative
to any circumstance lacking a unique king of France, then these
two sentences could never be true at the same time; (35) should
be a contradiction. Russell uses this example as evidence in favor
of his own treatment of definite descriptions; indeed, here, the
existence component of the meaning behaves like an entailment
rather than a presupposition. But through accommodation, the
first sentence can turn into something equivalent to “It’s not the
case that there is a king of France and he is bald.” A defender of the
Frege/Strawson approach to definite descriptions can thus appeal
to the mechanism of accommodation in order to explain away the
apparent counterexample.

Once accommodation is sanctioned as a theoretical possibil-
ity, a much wider range of interpretations is predicted to be avail-
able for any given sentence containing a presupposition trigger.
In general, more careful argumentation is then required in order
to diagnose presuppositions, specifically to distinguish them em-
pirically from entailments.

8.4 Definedness conditions

So far we have seen one mechanism for representing presupposi-
tions: the iota operator (ι). In this section, a second one will intro-
duced: the partial operator (∂). The partial operator is a general
formal tool for representing definedness conditions.

Recall that in the previous section, we encountered two ex-
amples of presuppositional expressions, namely the definite de-
terminer the and the possessive suffix ’s. We translated both using
ι-expressions, which lead to a presupposition failure when noth-
ing satisfies the description. In that case, we assumed that definite
descriptions denote a special ‘undefined individual’, denoted #e .

Not all presuppositions involve the presupposition of existence
for a given referent, though. A more general way of dealing with
presupposition is needed. The determiners both and neither, for
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example, come with presuppositions; accordingly, they are called
PRESUPPOSITIONAL DETERMINERS. In a context where three can-
didates are applying for a job, it would be quite odd for someone
to say either of the following:

(36) a. Both candidates are qualified.
b. Neither candidate is qualified.

If there were only two candidates and both were qualified, then
(36a) would clearly be true and (36b) would clearly be false. But
with any number of candidates other than two, it is odd to say
that these sentences are true. Applying the projection test, we
can see that this inference survives embedding under entailment-
cancelling operators:

(37) a. It’s not true that both candidates are qualified.
b. It’s not true that neither candidate is qualified.

(38) a. If both candidates are qualified, then we will have a
round of interviews.

b. If neither candidate is qualified, then we will have to
expand the search.

(39) a. Maybe both candidates are qualified.
b. Maybe neither candidate is qualified.

All of these imply that there are two candidates. These results
support the idea that both candidates and neither candidate come
with a presupposition that there are exactly two candidates.

We will set aside both and focus on neither, in its use as a de-
terminer as in (36b). We can model its presupposition by treating
neither as a variant of no that is only defined when its argument
is a predicate with exactly two satisfiers. Let us use ∣P ∣ = 2 (‘the
cardinality of P is 2’) as a shorthand way of expressing the fact
that predicate P has exactly two satisfiers.4 This is what is pre-

4
∣P ∣ = 2 is short for ∃x∃y[¬(x = y)∧P(x)∧P(y)∧¬∃z[¬(z = x)∧¬(z = y)∧

P(z)]].
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supposed. To signify that it is presupposed, we will use Beaver &
Krahmer’s (2001) ∂ operator, pronounced “presupposing that”. It
can be referred to as the ‘partial operator’. This operator is of type
⟨t , t⟩; that is, it maps a formula to another formula. A formula like
this:

∂(∣P ∣ = 2)

can be read, ‘presupposing that there are exactly two Ps’. The lex-
ical entry for neither can be stated using the ∂ operator as follows:

(40) neither↝λPλQ .[∂(∣P ∣ = 2)∧¬∃x .[P(x)∧Q(x)]]

This says that neither is basically a synonym of no, carrying an
extra presupposition: that there are exactly two Ps.

In order to be able to give translations like (40), we need to
augment Lλ to handle formulas containing the ∂ symbol. Let us
call our new language L∂. In this new language, ∂(φ) will be a
kind of expression of type t . Its value will be ‘true’ if φ is true and
‘undefined’ otherwise. While the logics in previous chapters were
classical and therefore two-valued, this new language is a THREE-
VALUED LOGIC: a logic in which there are three truth values to be
assigned to sentences. To implement this, we add the following
rules:

Syntax Rule: Definedness conditions
Ifφ is an expression of type t , then ∂(φ) is an expression of type t .

Semantic Rule: Definedness conditions
If φ is an expression of type t , then:

J∂(φ)KM ,g ={T if JφKM ,g =T
m otherwise.
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The lexical entry in (40) will give us the following analysis for
(36b), where beta-reduced variants of the translations are given at
each node:

(41) ∂(∣candidate∣ = 2)∧¬∃x .[candidate(x)∧qualified(x)]

λQ .[∂(∣candidate∣ = 2)∧¬∃x .[candidate(x)∧Q(x)]]

λPλQ .[∂(∣P ∣ = 2)∧¬∃x .[P(x)∧Q(x)]]

neither

λx .candidate(x)

candidate

λx .qualified(x)

is qualified

The translation for the whole sentence should have a defined value
in a model if ∣candidate∣ = 2 is true in the model. If it has a de-
fined value, then its value is equal to that of ¬∃x .[candidate(x)∧
qualified(x)].

Let us consider another example of a presupposition that can
be represented using definedness conditions: the existence pre-
supposition of the quantifier every. This presupposition can be
captured using the following lexical entry for every:

(42) every↝λPλQ .[∂(∃x .P(x))∧∀x .[P(x)→Q(x)]]

This treatment will give rise to an undefined value for Every dub-
step album by Frege in models where there are no dubstep albums
by Frege (such as the one corresponding to reality), capturing the
intuition that the sentence is neither true nor false.

Exercise 13. (i) Give a derivation tree for the following sentences,
specifying a translation at each node:

(a) Neither elevator is new.

(b) Every elevator is new.
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(c) Not every elevator is new.

Assume that new denotes a predicate of individuals. You can use
the following translation for not in the third sentence:

λQ⟨⟨e,t⟩,t⟩λP⟨e,t⟩ .¬Q(P)

(ii) Based on the truth conditions you’ve derived for the sentences
in the first part, which of those sentences are predicted to presup-
pose that there are elevators (if any)?

8.5 Designing a three-valued logic

In line with Strawson’s intuition that sentences with presupposi-
tion failures are neither true nor false, we have treated presuppo-
sition failures as cases where an expression lacks a classical truth
value. We introduced a third truth value, #, representing ‘non-
sense’, to use as the denotation for sentences containing presup-
position failures. We generalized this strategy to every type, so
that we have special undefined entities of every type.

An alternative, subtly different strategy would have been to
abstain from assigning any denotation whatsoever to empty de-
scriptions and other expressions whose presuppositions are not
satisfied. These expressions would then be undefined in a more
radical sense, lacking any sort of denotation whatsoever, rather
than denoting an undefined entity. This radical type of undefined-
ness is what results in the Heim & Kratzer (1998) system when a
partial function is applied to an argument that is not in its do-
main.

A consequence of the radical undefinedness approach is that
not every syntactically well-formed expression has a denotation.
LaPierre (1992) pointed out a difficulty with this type of system.
He wrote, “[C]onsider a partial function g of type ⟨t , t⟩, ... such
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that g(1) is undefined. Now try to apply g to g(1). Strictly speak-
ing, this application makes no sense, because g(1) is not an ar-
gument at all” (p. 521). A related issue is as follows: if f is a par-
tial function that is not defined for x, then strictly speaking f (x)
makes no sense; it’s supposed to denote the result of applying f
to x but f cannot be applied to x. If we treated expressions con-
taining presuppositions as radically undefined, then many of the
expressions that we would be tempted to write in the course of
doing compositional derivations would strictly speaking make no
sense. When we use Function Application to compute the truth-
and-definedness conditions of complex expressions, and put the
expressions representing their meanings together using the func-
tion application syntax, putting the argument in parentheses next
to the function, we want to be making sense, even if the object
language expressions whose meaning we are representing might
be nonsensical. If we give the status of object to the undefined for
every type, then we can be guaranteed that the representation-
language expressions that we derive have denotations, as long as
they are well-formed.

Now, in setting up a logic with three truth values, a number
of decisions have to be made. For example, what if φ is unde-
fined andψ is true—is [φ∧ψ] undefined or false? If we take unde-
finedness to represent ‘nonsense’, then presumably the conjunc-
tion of nonsense with anything is also nonsense. The same ap-
plies for disjunction, and the negation of an undefined formula
is also presumably undefined. This perspective leads to the truth
tables in Table 8.1. In the truth tables for the binary connec-
tives, the truth value of one conjunct (or disjunct) is represented
by the row labels, and the truth value of the other is represented
by the column labels. The tables are symmetric, so it doesn’t mat-
ter which is which. The value in the table is the value for the
conjoined (or disjoined) formula. These connectives are called
the WEAK KLEENE connectives, after the American mathemati-
cian Stephen Cole Kleene. If, on the other hand, we take unde-
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∧ T F m

T T F m

F F F m

m m m m

∨ T F m

T T T m

F T F m

m m m m

¬
T F
F T
m m

Table 8.1: Truth tables for the Weak Kleene connectives

∧ T F m

T T F m

F F F F
m m F m

∨ T F m

T T T T
F T F m

m T m m

¬
T F
F T
m m

Table 8.2: Truth tables for the Strong Kleene connectives

finedness to represent ‘unknown value’, then the conjunction of
an unknown value with False is false, and the disjunction of an
unknown value with True is true. These connectives are called the
STRONG KLEENE connectives (see Table 8.2; the values that differ
from the Weak Kleene ones are bolded).

Strong Kleene and Weak Kleene connectives give different truth
conditions in the case where one conjunct/disjunct is undefined
and the other is not, such as the following:

(43) The king of France is wise and France is located in Africa.
Weak Kleene: m; Strong Kleene: F

(44) The king of France is wise or France is located in Europe.
Weak Kleene: m; Strong Kleene: T

(These truth values are based on the assumptions that there is no
king of France, and that France is not located in Africa but rather
in Europe.) Intuitions may differ regarding whether it is more sen-
sible to regard (43) as undefined or false, and whether it is more
sensible to regard (44) as undefined or true. In any case, there are
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∂

T T
F m

m m

A
T T
F F
m F

Table 8.3: Truth tables for the partial operator and the assertion
operator

trade-offs.
Without any additional mechanisms, the Strong Kleene con-

nectives give us a bit more flexibility: We can define Weak Kleene
connectives in terms of Strong Kleene ones, but not the other way
around. Furthermore, as we discuss in greater detail in §8.8, while
projection is a defining characteristic of presuppositions, they do
not always project; they sometimes get ‘filtered’ or ‘plugged’. On
their own, the Weak Kleene connectives seem to predict that pre-
suppositions will always project, while the Strong Kleene connec-
tives cause some presuppositions to be cancelled. These are prima
facie arguments in favor of the Strong Kleene connectives.

However, a system with Weak Kleene connectives can be aug-
mented with an assertion operator A, a “presupposition wipe-out
device” (Beaver & Krahmer, 2001, 167). A(φ) is true if φ is true,
and false otherwise. A truth table for the assertion operator is
given in Table 8.3, alongside a truth table for the partial operator
∂ introduced in the previous section. With the assertion operator
in the inventory of connectives, the logic has greater expressive
capacity, and it becomes possible to capture the disappearance of
some presuppositions even in the context of Weak Kleene binary
connectives. We’ll see an example of how this can work in §8.8.

It is sometimes useful to think of the semantic contribution of
a sentence as a conjunction consisting of two components: the
presupposition and the AT-ISSUE CONTENT. The at-issue content
is the part of a sentence which, intuitively speaking, expresses
its “main point”. In contrast, the presupposition typically corre-
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sponds to a background assumption. For example, the presuppo-
sition of (45a) is (45b) and its at-issue content is (45c).

(45) a. John stopped smoking.
b. John used to smoke.
c. John does not currently smoke.

When this simplified picture is implemented using the ∂ opera-
tor, one conjoins the presupposition ∂(π) with the at-issue con-
tent φ. If so, it is crucial to use a Weak Kleene conjunction, so
that [∂(π)∧φ] denotes the truth value of the at-issue content φ
whenever φ is true, and otherwise #. This is the desired behav-
ior. Under a strong Kleene interpretation, when both φ and ψ are
false, [∂(φ)∧ψ] is also false. But this is incorrect, since a sentence
whose presupposition is false has the truth value #. In light of this
consideration, and in keeping with our understanding of the third
truth value as ‘nonsense’, we will adopt the Weak Kleene connec-
tives here. Nevertheless, we encourage the reader to keep in mind
Strong Kleene as an alternative. (An alternative solution to this
problem, using the Strong Kleene connectives, would be to use a
binary ‘transplication’ operator that connects a non-presupposed
formula to a presupposed one, as Beaver & Krahmer (2001, p. 150)
do. Muskens (1995a) gives arguments in favor of such an approach.)

Another slightly thorny issue is identity. Under what circum-
stances do we want to say that a given sentence of the form α =β
is true, given that α or βmight denote #e ? We certainly don’t want
it to turn out to be the case that The king of France is the Grand
Sultan of Germany is a true statement. In keeping with our under-
standing of the third truth value as ‘nonsense’, and assuming that
any equality statement involving the undefined individual is non-
sense, we assume the following, for expressions α and β of any
type τ:
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Semantic rule: Identity

• If JαKM ,g and/or JβKM ,g is mτ, then Jα =βKM ,g =m.

• If neither is undefined, then:

Jα =βKM ,g ={ T if JαKM ,g = JβKM ,g

F otherwise.

Under this treatment, The king of France is the Grand Sultan of
Germany comes out as undefined, rather than true.

The last remaining issue we must address before we can de-
fine a three-valued logic to serve as our representation language
is what to do with quantified sentences. Consider the following
sentence:

(46) Every boy loves his cat.

Ignoring the presupposition of every, and building on the analysis
of possessive ’s given above (i.e. decomposing his into he + ’s and
treating his cat as synonymous with the cat he has), this would be
translated:

(47) ∀x .[boy(x)→ loves(x, ιy[cat(y)∧has(x, y)])]

This formula will be true in a model where every element of De

satisfies the following formula, when plugged in for x:

(48) boy(x)→ loves(x, ιy[cat(y)∧has(x, y)])

What, precisely, is the presupposition of (46)? The iota expression
will have a defined value just in case there is exactly one entity y
satisfying the following description:

(49) [cat(y)∧has(x, y)]

How many entities are there satisfying this description? Well, it
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depends on what individual x is assigned to. Suppose there is a
boy with no cats. Call him Freddie. If x is assigned to Freddie, then
the iota expression will denote the undefined individual. Does
that suffice to make the universal claim as a whole undefined? Or
can we still say that the universal claim is true as long as every boy
who has exactly one cat loves that cat? In other words, if the as-
sortment of truth values that the open formula x loves his cat (the
SCOPE FORMULA) takes on as we cycle through various values for x
contains both T and # (but never F), should the truth value for the
proposition Every boy loves his cat (the UNIVERSAL PROPOSITION)
be T or should it be #? Different authors have advocated different
answers to this question.

Given that a universal claim can be seen as a big conjunction,
and an existential claim can be seen as a big disjunction, it is natu-
ral to set up a partial logic in such a way that universal quantifiers
‘match’ conjunction, and existential quantifiers ‘match’ disjunc-
tion. With a Weak Kleene treatment of conjunction, then, this
desideratum leads to the following treatment of universal quan-
tification:

Semantic rule: Universal quantification
If u is a variable of type τ, and φ a formula:

J∀u .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if JφKM ,g[u→k] =T for all k ∈Dτ

# if JφKM ,g[u→k] = # for some k ∈Dτ

F otherwise

With this treatment of the universal quantifier, a universal claim
is false only if (a) the scope proposition never takes on an unde-
fined value for any value of the variable, and (b) the scope propo-
sition is false for at least one value of the variable. For example,
Every boy loves his cat is false only if every boy has exactly one cat
and at least one boy doesn’t love his cat.
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Exercise 14. Consider a model with a boy named Freddie who has
no cats, and two other boys. Both of the other boys have exactly
one cat that they love. Under the treatment of universal quantifi-
cation just given, what truth value does (47) have in this model?

Notice that the universal quantifier in this example ranges over
the elements of Dτ. Recall from our discussion above that mτ is
not a member of this set. The quantifier ranges over the ordinary
domain Dτ, which excludes the partial object mτ, rather than the
fixed-up domain Dτ∪{mτ}. Suppose it were otherwise; then uni-
versal statements would very frequently turn out to be undefined,
due to the fact that the scope formula would be undefined when
the variable in question is mapped to the undefined entity. Luck-
ily, though, we have excluded it from the domain of the quantifier.

In predicate logic, the universal and existential quantifiers are
duals of each other; in particular, ∀x .¬φ is equivalent to ¬∃x .φ.
To maintain this equivalence, given the treatment of the universal
quantifier just given, we must define the existential quantifier as
follows:

Semantic rule: Existential quantification
If u is a variable of type τ, and φ a formula:

J∃u .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F if JφKM ,g[u→k] = F for all k ∈Dτ

# if JφKM ,g[u→k] = # for some k ∈Dτ

T otherwise

So an existential claim is true only if the scope proposition is true
for at least one member of the domain and is never undefined.
For example, Some boy loves his cat is false if every boy has exactly
one cat (and no boy loves his cat).
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Exercise 15. A famous example in the literature on presupposi-
tion is Heim’s (1983b) A fat man was riding his bicycle. Intuitively,
this sentence does not presuppose that every fat man owns a bi-
cycle; it suffices for a single fat man to own one. How does it turn
out in the theory we have developed so far? What does our the-
ory predict this sentence to presuppose? To answer this question,
start by giving a compositional derivation for the sentence. You
may treat fat man and was riding as single words. Then discuss in
what models the truth conditions you derive would be defined.

Our treatment of identity and quantification can help to give
us a handle on certain exceptions to the general rule that predi-
cations involving the undefined individual will themselves be un-
defined. Above, we said that a predicate should yield m when ap-
plied to the undefined individual, as in The king of France is wise.
But there are cases in which we might want the predication to be
true. Among them are negative existence statements such as the
following famous case, discussed by Russell (1910) in response to
writings of Alexius Meinong.

(50) The golden mountain does not exist.

Meinong argued that while the golden mountain doesn’t actually
exist, it has a secondary quasi-existence that allows us to refer to
it. Russell (1905) disagreed heartily with Meinong, but used nega-
tive existence statements like this as evidence against Frege’s anal-
ysis of the definite article, in favor of his own. A Frege-friendly
approach to negative existence statements involving definite de-
scriptions like (50) is to translate the English word exist as follows:

(51) exist↝ λx .∃y .A(y = x)

Here we have used the assertion operator A so that the equality
statement comes out as false rather than undefined when an or-
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dinary individual is compared to me . Given the lexical entry in
(51), the translation of (50) would be:

(52) ¬∃y .A(y = ιx .[golden(x)∧mountain(x)])

In models where there is no unique golden mountain, the term
ιx .[golden(x)∧mountain(x)]denotes the undefined individual #e .
Hence any equality statement involving it will be undefined. The
assertion operator turns undefined into false. So the following for-
mula:

(53) ∃y .A(y = ιx .[golden(x)∧mountain(x)])

denotes F, and the formula (52) denotes T.5

8.6 Comparison with the colon-dot notation

Readers should be aware that there is a widely used alternative no-
tation for definedness conditions, based on Heim & Kratzer (1998).
In this style of notation, the presupposition of a lambda term is
written at the beginning of the value description of that term, in
between a colon and a dot. For example, (40) would be written

λPλQ ∶ ∣P ∣ = 2.¬∃x[P(x)∧Q(x)]

in that notation, without any ∂ operator. For many purposes, the
two styles of notation are more or less interchangeable. How-
ever, one difference is related to the fact that the Heim and Kratzer

5Another exception to the rule that predications involving the undefined in-
dividual are themselves undefined comes from sentences in which a definite
description that fails to refer occurs in a non-subject position (Strawson, 1964):

(i) The Exhibition was visited yesterday by the king of France.

While this sentence still presupposes the existence of a unique king of France,
it is still readily judged false (von Fintel, 2004). We offer no account of this phe-
nomenon.
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style does not include undefined truth values as part of the ontol-
ogy; rather, a function whose domain restrictions are not met by
a given candidate input simply cannot apply to it. In other words,
the Heim and Kratzer style involves what we referred to as ‘radi-
cal undefinedness’ above. This yields the problem that LaPierre
(1992, p. 521) pointed out: If a function f is not defined for in-
put x, then there is no sense in talking about the application of
another function f ′ to f (x); in other words f ′( f (x)) makes no
sense. In this respect, under the Heim and Kratzer system, there is
a limitation on one’s ability to meaningfully assign semantic rep-
resentations to arbitrarily complex expressions of English.

Another advantage of the partial operator notation is that it
can be used in meaning-representations that are not lambda-expressions.
For example, presuppositions can be indicated at the top of the
tree for a sentence, represented by a formula.

On the other hand, the colon-dot notation is admittedly more
flexible insofar as it can combine directly with expressions of types
other than t ; the partial operator is an expression of type t and
generally combines with other expressions via conjunction of for-
mulas. So while the colon-dot system allows expressions like

λx ∶ female(x) . x

(the identity function restricted to females), we have no direct equiv-
alent in our system. However, the iota-operator allows a workaround
for that; we can represent that function as:

λx . ιy .[female(y)∧ y = x]

8.7 L∂: A partialized lambda calculus

We are now ready to give the full semantics for our new represen-
tation language L∂. We leave the syntax of the language implicit,
and just give the semantics here.

As in LPred and Lλ, the semantic values of expressions in L∂ de-
pend on a model and an assignment function. As usual, a model
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M determines a set of individuals, which we will call D , and an
interpretation function I that maps non-logical constants of the
language to denotations of the appropriate kind based on this set
of individuals and the set of truth values.

Again, let T be the set of types (e for individuals, t for truth
values, ⟨e, t⟩ for functions from individuals to truth values, etc.).
For each type τ ∈ T , the model determines a corresponding do-
main Dτ. As before, let us define the STANDARD FRAME based on
D as an indexed family of sets (Dτ)τ∈T , where:

• De =D

• D t = {T,F}

• for any types σ and τ, D⟨σ,τ⟩ is the set of functions from Dσ

to Dτ.

We refer to these sets in the standard frame as the CLASSICAL DO-
MAINS. De is a set of individuals that does not include the unde-
fined entity. D t = {T,F}. For functional types ⟨σ,τ⟩, there is a
classical domain D⟨σ,τ⟩ consisting of the total functions from Dσ

to Dτ.
For L∂, along with the standard frame, models are associated

with an AUGMENTED FRAME as well. For L∂, we distinguish be-
tween CLASSICAL DOMAINS Dτ and FIXED-UP DOMAINS D+

τ , for any
type τ. The fixed-up domains include the undefined entities. For
atomic types, the fixed-up domains are defined as the union of the
classical domains with the undefined entity of the corresponding
type:

• D+
t = (D t ∪{mt}).

• D+
e = (D t ∪{me}).

For complex types D+
⟨σ,τ⟩, we define D+

⟨σ,τ⟩ as the set of functions

from D+
σ to D+

τ . We define the undefined entity of any complex
type ⟨σ,τ⟩ as a function whose output is always mτ, the undefined
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entity of type τ. In other words, m⟨σ,τ⟩(k) =mτ for any element k
of D+

σ. Since m⟨σ,τ⟩ is a function from D+
σ to D+

τ , it is a member of
D+

⟨σ,τ⟩. An AUGMENTED FRAME based on D as an indexed family of

sets (Dτ)+τ∈T characterized in this way.
A MODEL for L∂ based on D , then, is a triple

⟨(Dτ)τ∈T ,⟨(Dτ)+τ∈T , I⟩

where:6

• (Dτ)τ∈T is a standard frame based on D

• (Dτ)+τ∈T is an augmented frame based on D

• for every type τ ∈ T , I assigns to every non-logical constant
of type τ an object from the domain D+

τ .

Thus every non-logical constant of type τ has a denotation in the
fixed-up domain D+

τ . In particular, expressions of type t will have
a denotation in D t∪{m}. Similarly, expressions of type e will have
a denotation in D+

e , which is De ∪{me}. Even though expressions
of type τ generally may have a denotation anywhere in the fixed-
up domain D+

τ , the classical domains play a role in the theory as
well, for example in the rule for quantification (see definition be-
low).

It follows from the definitions just given that an expression of
type ⟨σ,τ⟩ denotes a function from D+

σ to D+
τ . This means in par-

ticular that mσ is in the domain of any function denoted by an
expression of type ⟨σ,τ⟩. Making this assumption helps to ensure
that eta-reduction is valid. For example, let P be a constant of type
⟨t , t⟩ and let p be a variable of type t . Suppose P denoted one
of the four unary classical truth functions, and did not have the
undefined entity in its domain. Now, if we assume that lambda
expressions denote functions that can accept undefined entities
as inputs, then λp .P(p) denotes a function that is also defined

6This formalization is inspired by Gallin (1975), p. 12.
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on the nonclassical truth value m. So P would not be equivalent
to λp .P(p), in violation of the eta-reduction principle. Letting P
accept undefined values as input allows us to maintain the eta-
reduction principle.

That said, there are many odd functions that we might not
want to sanction as possible values for our non-logical constants
like smokes and loves. For example, imagine a predicate of type
⟨e, t⟩ that maps both John and the undefined individual toT, Mary
to F, and Bill to m. This seems like a rather absurd denotation for
a noun or a verb. To exclude such denotations, we assume that
constants denoting functions must denote functions that are TO-
TAL in LaPierre’s (1992) sense: A function f from D+

σ to D+
τ is TOTAL

if and only if f (k) is not mτ for all k in the classical domain Dσ.
We also require for non-logical constants that their denotations
are STRICT functions; A function f from D+

σ to D+
τ is STRICT if and

only if f (mσ) is mτ.
Now onto assignments. An assignment g is a total function

whose domain consists of the variables of the language such that
if u is a variable of type τ then g(u) ∈D+

τ .7

The semantic rules are the following.

1. Basic Expressions

(a) If α is a non-logical constant, then JαKM ,g = I(α).

(b) If α is a variable, then JαKM ,g = g(α).

2. Iota
Jιu .φKM ,g

7It is important that assignment functions are able to map variables to the
undefined entity in order to ensure that beta-reduction is valid. For example,

assume that JφKM ,g is m. Then JA(φ)KM ,g is F. Let p be a variable of type t . If
the only possible values that p could take on via an assignment function were
T and F, then [λp . A(p)](φ) would be undefined even though A(φ) is false.
Hence beta-reduction would not be valid; it wouldn’t always be the case that
[λu .α](β) is equivalent to a version of α with all free instances of u substituted
for β.
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d if JφKM ,g[u↦d] =T but

for all d ′ ∈Dτ distinct from d ,JφKM ,g[u↦d ′] = F

me otherwise

3. Application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of
type σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g )

4. Identity
If α and β are expressions of type τ, then Jα =βKM ,g

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

# if JαKM ,g =mτ or JβKM ,g =mτ

T if JαKM ,g = JβKM ,g

F otherwise

5. Connectives

(a) The connectives ∧, ∨, and ¬, have a Weak Kleene se-
mantics, as defined as in Table 8.1.

(b) The binary connectives → and ↔ are defined in terms
of ¬ and ∨:

• [φ→ψ] is defined as [¬φ∨ψ]
• [φ↔ψ] is defined as [[φ→ψ]∧ [ψ→φ]]

Hence the truth tables for→ and↔ are as in Table 8.4.

(c) Semantics for the unary connectives ∂ and A are defined
as in Table 8.3.

6. Quantification

(a) If u is a variable of type τ, and φ a formula:

J∀u .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if JφKM ,g[u→k] =T for all k ∈Dτ

# if JφKM ,g[u→k] = # for some k ∈Dτ

F otherwise
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(b) If u is a variable of type τ, and φ a formula:

J∃u .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F if JφKM ,g[u→k] = F for all k ∈Dτ

# if JφKM ,g[u→k] = # for some k ∈Dτ

T otherwise

7. Lambda Abstraction
Ifα is an expression of type τ and u a variable of typeσ then
Jλu .αKM ,g is that function h from D+

σ into D+
τ such that for

all objects k in Dσ, h(k) = JαKM ,g[u↦k].

This is just one example of a complete system; other design choices
are also possible.

Exercise 16. Define a semantics for→ and↔ based on the Strong
Kleene connectives. Make sure that [φ→ψ] is equivalent to
[¬φ∨ψ] and [φ↔ψ] is equivalent to [[φ→ψ]∧ [ψ→φ]].

Exercise 17. Define a semantics for the universal and existential
quantifiers based on the Strong Kleene connectives. Make sure
that the two quantifiers are duals of each other, so ∀x¬φ is equiv-
alent to ¬∃xφ and ¬∀xφ is equivalent to ∃x¬φ. (You don’t need
to prove that they are duals in your answer.)

→ T F m

T T F m

F T T m

m m m m

↔ T F m

T T F m

F F T m

m m m m

Table 8.4: Truth tables for→ and↔ in Weak Kleene logic
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Exercise 18. In M1, there are no elevators. In M2, there is one,
namely e1. In M3, there are two, namely e2 and e3. Specify the
indicated semantic values:

(a) Jιx .elevator(x)KM1

(b) J∃x .elevator(x)KM1

(c) J∂(∃x .elevator(x))KM1

(d) J∃y .A(y = ιx .elevator(x))KM1

(e) Jιx .elevator(x)KM2

(f) J∃x .elevator(x)KM2

(g) J∂(∃x .elevator(x))KM2

(h) J∃y .A(y = ιx .elevator(x))KM2

(i) Jιx .elevator(x)KM3

(j) J∃x .elevator(x)KM3

(k) J∂(∃x .elevator(x))KM3

(l) J∃y .A(y = ιx .elevator(x))KM3

8.8 The projection problem

The treatment of presupposition we have given so far correctly
predicts that presuppositions can PROJECT: If a sentence S is em-
bedded in a larger sentence S′, and S carries a presupposition,
then S′ may carry the same presupposition. For instance, both
of the following sentences convey that there are multiple candi-
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dates:

(54) a. Every candidate is qualified.
b. It is not the case that every candidate is qualified.

We have set up our logic so that ¬φ has the truth value m when-
everφ has that truth value. So, whenever (54a) is undefined, (54b)
is undefined as well. Hence, if a given sentence S presupposes
some sentence P—in the sense that the truth value of S is unde-
fined unless P is true—then the negation of S is predicted to pre-
suppose P as well. In that sense, the presupposition is predicted
to PROJECT OVER NEGATION, under the theoretical assumptions we
have laid out. In fact, given our use of the Weak Kleene connec-
tives, presuppositions are always predicted to project from an em-
bedded sentence to a more complex one containing it (unless we
include Beaver & Krahmer’s (2001) assertion operator A).

But presuppositions do not always project. Consider the fol-
lowing examples:

(55) If there is a king of France, then the king of France is wise.

(56) Either there is no king of France or the king of France is
wise.

Neither of these sentences as a whole implies that there is a king
of France. The problem of determining when a presupposition
projects is called the PROJECTION PROBLEM.

The expressions if /then and either/or are FILTERS, which do
not let all presuppositions “through”, so to speak. (Imagine the
presuppositions floating up from deep inside the sentence, and
getting trapped when they meet if /then or either/or.) Being fil-
ters, operators like if /then and either/or do let some presupposi-
tions through. Examples:

(57) If France remains neutral, then the king of France is wise.

(58) Either France is lucky or the king of France is wise.
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Both of these sentences carry the presupposition that there is a
king of France. The key difference between (57) and (55) is that
in (57), the antecedent (France remains neutral) does not entail
the consequent’s presupposition (that there is a king of France).
Similarly, in (58), unlike in (56), the first disjunct (France is lucky)
does not entail the second disjunct’s presupposition (again, that
there is a king of France).

In general, when the antecedent of the conditional (the if -
part) entails a presupposition of the consequent (the then-part),
the presupposition gets filtered out, so the larger, complex sen-
tence does not carry the presupposition. With a disjunction, the
generalization is that presupposition of one disjunct gets filtered
out when the negation of another disjunct entails it.

We have used the word entail in the generalizations above.
In (55) and (56), the part of the sentence that is supposed to en-
tail the presupposition is simply equivalent to the presupposition.
But it could also be stronger, and entail the presupposition with-
out being equivalent to it:

(59) a. If France is a constitutional monarchy with a king and
a queen, then the king of France is wise.

b. Either France has not recently crowned a king for the
first time in centuries, or the king of France is wise.

In (59a) the antecedent is France is a constitutional monarchy with
a king and a queen, which is slightly stronger (more informative)
than the consequent’s presupposition—just that France has a king.
Still, the sentence as a whole does not carry the presupposition
that there is a king of France; it gets filtered out. So the antecedent
need not be identical to the consequent’s presupposition; an en-
tailment relation suffices for the presupposition to be filtered out.
Similarly, in (59b), the negation of the first disjunct (France has
recently crowned its first king in centuries) is stronger than the sec-
ond disjunct’s presupposition (that France has a king). Here again,
the presupposition gets filtered out; the sentence as a whole does
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not carry the presupposition that there is a king of France. Again
we see that an entailment relation suffices for the filtering to take
place.

Furthermore, the entailment relation may depend on real-world
knowledge or assumptions (example adapted from Karttunen 1973a):

(60) Either Geraldine is not a devout Christian or she has stopped
attending services on Sundays.

The second disjunct (she has stopped attending services on Sun-
days) presupposes that Geraldine did attend services on Sundays.
The first disjunct is Geraldine is not a devout Christian, the nega-
tion of which is Geraldine is a devout Christian. Together with the
assumption that all devout Christians have attended services on
Sundays at some point in their life, the negation of the first dis-
junct entails that Geraldine attends services on Sundays. But the
first disjunct does not carry that entailment on its own. The gener-
alization should thus be revised to take real-world knowledge and
assumptions into account: If the negation of the first disjunct, to-
gether with real-world knowledge and assumptions, entails a pre-
supposition of the second disjunct, then that presupposition gets
filtered out. The analogous modification is applicable to the fil-
tering condition on conditional.

There are ways of handling presupposition projection within
the “static” type of framework we have been developing so far. As
mentioned above, one way to capture cases in which presupposi-
tions fail to project is with the assertion operator A. Consider the
following example:

(61) Either John didn’t smoke before, or he stopped smoking.

Intuitively, this sentence does not carry the presupposition that
John smoked in the past. As suggested above in conjunction with
example (45a), suppose we represent John stopped smoking with
the formula [∂π∧φ], whereπ represents the proposition that John
smoked in the past, and ψ represents the proposition that John
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currently does not smoke. Then the first disjunct in (61) could be
represented as ¬π, so the whole translation we would derive for
(61) would be:

(62) [¬π∨ [∂(π)∧φ]]

With these truth-and-definedness conditions, it is impossible for
the first disjunct to be true, because the presupposition of the sec-
ond disjunct contributes a presupposition that it is false. This
arguably goes against the pragmatics of disjunction: Asserting a
sentence of the form ‘A or B’ should only be felicitous in a context
where A is an open possibility. Beaver & Krahmer (2001) suggest
that the semantic component can provide another translation for
the sentence though, one with the A operator:

(63) [¬π∨A(∂(π)∧φ)]

With this translation, the sentence as a whole carries no presup-
position that John smoked in the past. Furthermore, it doesn’t vi-
olate the pragmatics of disjunction. Hence, it is this translation
that a person interpreting the sentence should choose. Beaver
& Krahmer’s (2001) ‘Floating-A Theory’ allows for A-operators to
be inserted in the compositional derivation process, providing in-
terpretations in which presuppositions are promoted to the sta-
tus of at-issue content. When pragmatic principles rule out all
of the interpretations in which the presuppositions survive, the
presupposition-free ones are all that remain. We refer the reader
to their paper for more details on how it works.

Another approach to the projection problem has made use of
dynamic semantics, where the denotation of a sentence is a “con-
text change potential”: a function that can update a discourse
context. We present a dynamic theory of meaning in the next
chapter.
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9 ∣ Dynamic semantics

(Significant revisions are planned for this chapter.)

9.1 Pronouns with indefinite antecedents

In this chapter, we motivate DYNAMIC SEMANTICS,1 where the de-
notation of an utterance is something that depends on and up-
dates the current discourse context. The phenomena we focus on
are pronouns with indefinite antecedents, including the famous
‘donkey sentences’:

(1) If a farmer owns a donkey, then he beats it.

In dynamic semantics, an indefinite noun phrase like a farmer
introduces a new DISCOURSE REFERENT into the context, and an
anaphoric pronoun or definite description picks up on the dis-
course referent.

Consider the following two-sentence discourse:

(2) My neighbor found a cat. Then it ran away.

So far, we have analyzed indefinite descriptions as existential quan-
tifiers. This was Russell’s (1905) treatment.

There are good reasons to favor Russell’s treatment of indef-
inites over one on which indefinites refer to some individual, as

1 Heim 1982b, 1983b,a; Kamp & Reyle 1993; Groenendijk & Stokhof 1990a,
1991; Muskens 1996, among others
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Heim (1982b) discusses. First, it correctly captures the fact that
(3) does not imply that there is a specific dog that John and Mary
are both friends with.

(3) John is friends with a dog and Mary is friends with a dog.

If we assumed that a dog referred to some particular dog, then
(3) would imply that John and Mary have a common dog-friend.
Second, Russell’s analysis correctly captures the fact that (4) does
not say that some particular dog did not come in, in contrast to
(5), which has a proper name referring to a dog and does have
that implication.

(4) It is not the case that a dog came in.

(5) It is not the case that Fido came in.

Third, Russell’s analysis correctly captures the fact that (6) can be
true even if it is not the case that there is some particular dog that
everybody owns, while (7) does not have that implication.

(6) Every child owns a dog.

(7) Every child owns Fido.

If a dog referred to a particular dog then (6) should mean that ev-
ery child owns that dog, as in (7).

However, there are some problems. If we analyze example (2)
using Russell’s very sensible analysis, we will derive the following
representation (assuming that it carries the index 3, and that a se-
quence of two sentences is interpreted as the conjunction of the
two sentences):

(8) ∃x[Cat(x)∧Found(n, x)]∧RanAway(v3)

with v3 an unbound variable outside the scope of the existential
quantifier. (It doesn’t matter which variable we choose; even if
we choose x, the variable will still be unbound, because it will be
outside the scope of the existential quantifier.) Assuming that QR
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does not move quantifiers beyond the sentence level, the scope of
the existential quantifier introduced by a cat does not extend all
the way to include the variable v3, and there is no other variable-
binder to bind it.

Exercise 1. Give LF trees and derivations for the two sentences in
(2). (Feel free to treat ran away as a single verb.) Explain why these
representations do not capture the connection between the pro-
noun and its intuitive antecedent.

One imaginable solution to this problem is to allow QR to move
quantifiers to take scope over multiple-sentence discourses, so we
could get the following representation:

(9) ∃x[Cat(x)∧Found(s, x)∧RanAway(x)]

Regarding this imaginable solution, Heim (1982a, 13) writes the
following:

This analysis was proposed by Geach [1962, 126ff]. It
implies as a general moral that the proper unit for the
semantic interpretation of natural language is not the
individual sentence, but the text. [The formula] pro-
vides the truth condition for the bisentential text as
a whole, but it fails to specify, and apparently even
precludes specifying, a truth condition for the [first]
sentence.’

Heim (1982a) also presents a number of empirical arguments
against this kind of treatment. One comes from dialogues like the
following:

(10) a. A man fell over the edge.
b. He didn’t fall; he jumped.

What would a Geachian analysis be for a case like (10)? If we
let the existential quantifier take scope over the entire discourse,
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we would get the denotation ‘there exists an x such that x is a
man and x fell over the edge and x didn’t fall over the edge and
x jumped’. This is self-contradictory.

Another argument that Heim makes against the Geachian anal-
ysis is based on examples like the following:

(11) a. John owns some sheep. Harry vaccinated them.
b. Susan found exactly one cat. Then it ran away.

Example (11a) is only true if Harry vaccinated all of the sheep John
owns. For example, it should be false in a situation where John
owns six sheep, of which Harry vaccinated three. On the Geachian
analysis, the interpretation would be something along the lines,
‘there exists an x such that x is a bunch of sheep and John owns x
and Harry vaccinated x’, which would be true in such a situation.
But the English sentence would not be. The reason we don’t want
it to be true is that maybe John owns x +4 sheep, but Harry only
vaccinated x; that is, the x for John doesn’t necessarily mean all of
his sheep. so this is not a welcome prediction. Similarly, example
(11b) should be false in a situation where Susan found exactly two
cats, of which exactly one ran away. But the Geachian analysis
predicts it to be equivalent to There is exactly one cat that Susan
found and that ran away.

Third, Geach’s proposal would mean that existential quanti-
fiers have different scope properties from other quantifiers. Con-
sider the following examples:

(12) A dog came in. It lay down under the table.

(13) Every dog came in. #It lay down under the table.

(14) No dog came in. #It lay down under the table.

In neither (13) nor (14) can it be bound by the quantifier in the
first sentence.2 Heim (1992, 17) concludes:

2There is a phenomenon called telescoping, counterexemplifying the gener-
alization that every cannot take scope beyond the sentence boundary. Examples
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The generalization behind this fact is that an unem-
bedded sentence is always a “scope-island,” i.e. a unit
such that no quantifier inside it can take scope be-
yond it. This generalization (which is just a special
case of the structural restrictions on quantifier-scope
and pronoun-binding that have been studied in the
linguistic literature) is only true as long as the puta-
tive cases of pronouns bound by existential quanti-
fiers under Geach’s analysis are left out of considera-
tion.

Thus it seems that Geach’s solution will not do, and we need an-
other alternative.

So-called ‘donkey anaphora’ is another type of case involving
pronouns with indefinite antecedents that motivates dynamic se-
mantics. The classic ‘donkey sentence’ is:

(15) If a farmer owns a donkey, then he beats it.

This example is naturally interpreted as a universal statement, rep-
resentable as follows:

(16) ∀x∀y[[Farmer(x)∧Donkey(y)∧Owns(x, y)]→Beats(x, y)]

But the representation that we would derive for it using the as-
sumptions that we have built up so far would be:

(17) [∃x∃y[Farmer(x)∧Donkey(y)∧Owns(x, y)]]→Beats(x′, y ′)

where the existential quantifiers have scope only over the antecedent
of the conditional. This analysis leaves the variables introduced

include:
(i) Every story pleases these children. If it is about animals, they are excited, if it
is about witches, they are enchanted, and if it is about humans, they never want
me to stop.
(ii) Each degree candidate walked to the stage. He took his diploma from the
dean and returned to his seat.
(From Poesio & Zucchi 1992, “On Telescoping”)
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by the pronouns (the x′ and y ′ in (17)) unbound; clearly it does
not deliver the right denotation.

Similar problems arise with indefinite antecedents in relative
clauses:

(18) Every man who owns a donkey beats it.

Exercise 2. Give a representation in Lλ capturing the intuitively
correct truth conditions for (18). Then give an LF tree and a
derivation for (18) using the assumptions that we have built up so
far. Does this derivation give an equivalent result? If so, explain. If
not, give a situation (including a particular assignment function)
where one would be true but the other would be false.

According to Geach (1962), we must simply stipulate that in-
definites are interpretable as universal quantifiers that can have
extra-wide scope when they are in conditionals or in a relative
clause. But this is more of a description of the facts than an ex-
planation for what is happening. Moreover, it is not as if just any
relative clause allows for a wide-scope universal reading of an in-
definite within it:

(19) A friend of mine who owns a donkey beats it.

There is no wide-scope universal reading for a donkey here.
Heim’s (1982b) idea is that indefinites have no quantificational

force of their own, but are open formulas containing variables,
which may get bound by whatever quantifier there is to bind them.
This is supported by the fact that their quantificational force seems
quite adaptable; witness the following equivalences:

(20) In most cases, if a table has lasted for 50 years, it will last
for 50 more.
⇐⇒Most tables that have lasted for 50 years will last for
another 50.
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(21) Sometimes, if a cat falls from the fifth floor, it survives.
⇐⇒ Some cats that fall from the fifth floor survive.

(22) If a person falls from the fifth floor, he or she will very
rarely survive.
⇐⇒Very few people that fall from the fifth floor survive.

However, on Heim’s view, indefinites are unlike pronouns in that
they introduce a ‘new’ referent, while pronouns pick up an ‘old’
referent. This idea of novelty is formulated in the context of dy-
namic semantics, where as a sentence or text unfolds, we con-
struct a representation of the text using discourse referents. A
pronoun picks out an established discourse referent. An indefi-
nite contributes a new referent, and has no quantificational force
of its own. The quantificational force arises from the indefinite’s
environment.

The idea of a DISCOURSE REFERENT is laid out by Karttunen
(1976), which opens as follows:

Consider a device designed to read a text in some nat-
ural language, interpret it, and store the content in
some manner, say, for the purpose of being able to an-
swer questions about it. To accomplish this task, the
machine will have to fulfill at least the following basic
requirement. It has to be able to build a file that con-
sists of records of all the individuals, that is, events,
objects, etc., mentioned in the text and, for each indi-
vidual, record whatever is said about it.

Karttunen characterizes discourse referents as follows: “the ap-
pearance of an indefinite noun phrase establishes a discourse ref-
erent just in case it justifies the occurrence of a coreferential pro-
noun or a definite noun phrase later in the text.”3 Thus a dis-

3Here, Karttunen is using “coreference” in a looser manner than the one Heim
& Kratzer (1998) advocate when they say that “coreference implies reference”.
For Karttunen, any kind of anaphor-antecedent relationship qualifies as coref-
erence, even if reference does not take place.
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course referent need not correspond to any actual individual; in
this sense, a discourse referent does not necessarily imply a ref-
erent. There are examples in which the occurrence of a corefer-
ential pronoun or definite noun phrase is justified, but no partic-
ular individual is talked about, as in No man wants his reputa-
tion dragged through the mud. A discourse referent is more like a
placeholder for an individual, very much like a variable. Accord-
ing to Karttunen, one of the virtues of this notion is that it “allows
the study of coreference to proceed independently of any general
theory of extralinguistic reference” (p. 367).

Karttunen (1976) also pointed out that discourse referents have
a certain LIFESPAN; they do not license subsequent anaphora in
perpetuity. Here is an example where a discourse referent dies:

(23) Susan didn’t find a cat and keep it. #It is black.

The pronoun it in the second sentence cannot refer back to the
discourse referent that the it in the first sentence picks up. The
lifespan of that discourse referent ends with the scope of negation.
You might be tempted to account for this fact by assuming that
anaphora can only be used if the discourse referent it links back
to is assigned to a particular individual or entity. But this is not a
general requirement:

(24) Susan found a cat and kept it. It is black. Susan found
another cat and let it run away. It was grey.

Examples (13) and (14) above provide further cases in which one
can see evidence of lifetime limitations for discourse referents. So
while indefinites seem to introduce discourse referents with an
unusually long life span, compared to other apparently quantifi-
cational expressions, the discourse referents they introduce aren’t
immortal. A good theory should account for both sides of this ten-
sion.
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9.2 File change semantics

Heim’s (1982b) FILE CHANGE SEMANTICS conceptualizes discourse
referents as file cards, very much building on Karttunen’s metaphor.
In file change semantics, an indefinite introduces a new file card.
Subsequent anaphoric reference updates the file card. For exam-
ple, consider the discourse in (25):

(25) a. A dog bit a woman.
b. She hit him with a paddle.
c. It broke in half.
d. The dog ran away.

The first sentence contains two indefinites, a dog and a woman.
These trigger the introduction of two new file cards; call them file
card 1 and file card 2. File card 1 is associated with the property
‘dog’, and ‘bit 2’, and file card 2 is associated with the property
‘woman’, and ‘bitten by 1’. Pictorially, we can represent the situa-
tion like this:

1

dog
bit 2

2

woman
bitten by 1

After the second sentence, a third card is added, and the first two
cards are updated thus:

1

dog
bit 2

was hit by 2 with 3

2

woman
bitten by 1
hit 1 with 3

3

paddle
used by 2 to hit 1

And so forth, so that by the end of the discourse, the file looks
like this:
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(26)

1

dog
bit 2

was hit by 2 with 3
ran away

2

woman
bitten by 1
hit 1 with 3

3

paddle
used by 2 to hit 1

broke in half

The definite description the dog is assumed to behave just as an
anaphoric pronoun, and the descriptive content (dog) serves merely
to identify the appropriate discourse referent.

Exercise 3. Add a sentence to (25) and show what the file would
look like afterwards.

Like Karttunen, Heim wishes to distinguish between discourse
referents (i.e., file cards) and the things that they talk about. She
reasons that such an identification would be absurd, because a
file card is just a description and in principle it could match any
number of individuals:

what Karttunen calls “discourse referents” are, I sug-
gest, nothing more and nothing less than file cards.
Some people might disagree with this identification
and maintain that discourse referents are something
beyond file cards, that they are what the file cards de-
scribe. But such a distinction gains us nothing and
creates puzzling questions: File cards usually describe
more than one thing equally well. For example, if a
card just says “is a cat” on it, then this description fits
one cat as well as another.

This conception of file cards as descriptions is key to understand-
ing how truth is conceptualized in file change semantics.

In file change semantics, it is not formulas, but files (i.e., sets
of file cards), that are true or false. The truth of a file like (26) de-
pends on whether it is possible to find a sequence of individuals
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that match the descriptions on the cards. For example, consider
the following two worlds. Assume that in both worlds, Joan is a
woman, Fido and Pug are dogs, and Paddle is a paddle.

World 1 World 2
Pug bit Joan Fido bit Joan

Joan hit Pug with Paddle Joan hit Fido with Paddle
Paddle broke in half Paddle broke in half

Pug ran away Fido ran away

In both worlds, it is possible to find a sequence of individuals that
match the descriptions. In World 1, the sequence is ⟨Pug, Joan,
Paddle⟩ (corresponding respectively to file cards 1, 2, and 3), and
in World 2, it is ⟨Fido, Joan, Paddle⟩. So the file is true relative to
both worlds.

More technically, we say that a given sequence of individuals
SATISFIES a file in a given possible world if the first individual in
the sequence fits the description on card number 1 in the file (ac-
cording to what is true in the world), the second individual fits the
description on card 2, etc. A file is TRUE (a.k.a. SATISFIABLE) in a
possible world if and only if there is a sequence that satisfies it in
that world.

On this view, the denotation of a sentence corresponds to an
update to the file in the discourse. It is not any particular file;
rather the denotation of a sentence constitutes a set of instruc-
tions for updating a given file. In other words, the denotation
of a sentence is constituted by its potential to update the con-
text: a CONTEXT CHANGE POTENTIAL. In file change semantics,
the context is represented as a file, so the denotation of a sen-
tence is a FILE CHANGE POTENTIAL. To make this precise, we need
a conceptualization of files that is amenable to formal definitions.
The boxes we have drawn give a rough idea, but they do not lend
themselves to this purpose. We therefore identify a file with the set
of world-sequence pairs such that the sequence satisfies the file in
the world. For instance, the pair consisting of World 1 and the se-
quence ⟨Pug, Joan, Paddle⟩ would be in the set of world-sequence
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pairs making up the file represented by (26). So would the pair
consisting of World 2 and the sequence ⟨Fido, Joan, Paddle⟩. As
the denotation of a sentence in a dynamic framework is some-
thing that relates an input context to an output context, the deno-
tation would thus be a relation between two sets of world-sequence
pairs.

Recall that in a static framework, the denotation of a sentence
can be identified with a set of world-assignment pairs (or model-
assignment pairs): We talk about (the translation of) a sentence
as being true with respect to model M and assignment function
g . The set of model-assignment pairs that satisfy the formula rep-
resent the truth conditions for the sentence. Now, notice that a
sequence of individuals is very much like an assignment function,
mapping variables to individuals. Thus the difference between
static semantics and dynamic semantics can be seen as follows:
Whereas in static semantics, the denotation of a sentence cor-
responds to a set of world-assignment pairs, the denotation of a
sentence in dynamic semantics corresponds to a relation between
world-assignment pairs.

9.3 Compositional DRT

File change semantics is one theoretical framework that embod-
ies dynamic semantics; another is DISCOURSE REPRESENTATION

THEORY (Kamp & Reyle, 1993), in which DISCOURSE REPRESENTA-
TION STRUCTURES take the place of files. Discourse representation
structures (DRSs) are in a way one big file card, with information
about all of the discourse referents all combined together. For ex-
ample, the DRS for the discourse in (25) would look as follows:
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x y z

Woman(x)
Dog(y)

Paddle(z)
Bit(y,x)

Hit-with(x,y,z)
Ran-away(y)

Just as in file change semantics, this kind of structure is thought
to be built up over the course of a discourse, and the denotation
of a sentence can be seen as its potential to affect any DRS repre-
senting the current state of the discourse. A DRS has two parts:

• a UNIVERSE, containing a set of discourse referents;

• a SET OF CONDITIONS, which can be simple, likeWoman(x),
or complex, like ¬K or K ⇒ K ′, where K and K ′ are both
DRSs.

An indefinite adds a new discourse referent to the universe, and
subsequent anaphora can update the information associated with
that discourse referent. So, spoken out of the blue, a sentence with
two indefinites like a farmer owns a donkey would give rise to the
following DRS:

(27)

x y

Farmer(x)
Donkey(y)
Owns(x,y)

Informally, a DRS K is considered to be true in a model M if
there is a way of associating individuals in the universe of M with
the discourse referents of K so that each of the conditions in K is
verified in M . An EMBEDDING is a function that maps discourse
referents to individuals (like an assignment or sequence). The do-
main of this function will always be some set of discourse refer-
ents, but it may or may not include all of the possible discourse
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referents. In this sense, the function may be a PARTIAL FUNCTION

on the set of discourse referents.
The sentence a farmer owns a donkey can also be used as the

antecedent of a conditional, as in the famous donkey-sentence,
If a farmer owns a donkey then he beats it. In that case it would
appear as a DRS contained in a larger DRS, as follows:

(28)

x y

Farmer(x)
Donkey(y)
Owns(x,y)

⇒ Beats(x,y)

This is a DRS with one condition of the form K ⇒ K ′, where K
and K ′ are themselves DRSs. Within DRT, special interpretations
are stipulated for conditions of this form, and for conditions of
various other forms as well.

In this section, we show that it is possible to formalize DRT
within a version of Montague semantics that is based on classi-
cal type logic. One advantage of doing this is that the resulting
system can be combined with other parts of the system in this
book. Moreover, the formalization allows us to avoid the level of
discourse representations that is specific to file change semantics
and DRT, and to cut down on special-purpose auxiliary notions
involved in interpreting DRT. There are many formalizations that
combine DRT and Montague semantics, e.g. Dynamic Montague
Grammar (Groenendijk & Stokhof, 1990b). The system we present
here is based on Compositional DRT or CDRT (Muskens, 1995b,
1996). CDRT has the advantage of being based on classical logic,
which makes it easy to integrate it with the system developed in
the other chapters in this book. We will focus on accounting for
cases of anaphora where the antecedent doesn’t c-command the
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pronoun (as in donkey sentences) or isn’t in the same sentence as
the pronoun.

Formally, we will be working in a many-sorted version of the
logic in Church (1940). The two-sorted version of this logic was
studied in Gallin (1975); it is called two-sorted because it uses two
basic types, e for individuals and t for truth values. To this we
will now add a third basic type, r , which will contain discourse
referents and names. Conceptually, individuals are entities of the
familiar kind (like kings and cabbages) while discourse referents
and names are symbols that encode the focus of our attention
throughout discourse. Discourse referents are introduced by in-
definites, while names are introduced by proper nouns.4 For each
type-e constant in our language (john, mary etc.), we assume that
the domain also contains a type-r name rjohn, rmary, etc. In addi-
tion to names, we will assume that any model contains either an
unlimited supply of discourse referents, or in any case one that is
sufficient for the purpose of any discourse. To keep things simple,
we will start with models that contain just three discourse refer-
ents r1,r2,r3.

Alongside discourse referents, our language will still make use
of variables x, y, z, x′,etc., as in Chapter 4; it is important not to
confuse them with discourse referents. In particular, variables
can be free or bound by quantifiers and by lambda terms, but dis-
course referents cannot. 5

From the three basic types e, t ,r , we derive functional types
as in Chapter 5. In particular, we will make use of the type ⟨r,e⟩,
which is the type of functions from discourse referents to indi-
viduals. We will refer to objects of this type as assignments. These
assignments are similar to the interpretation functions in Chapter

4Muskens (1996) uses the terms unspecific discourse referents for our dis-
course referents and specific discourse referents for our names.

5Since discourse referents and names are objects in the model and since vari-
ables can range over objects of any type, we could in principle also introduce
variables of type r that range over them. Here we avoid doing so to reduce con-
fusion and because we will not have a need for such variables.
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4, with the difference that they are now considered entities within
a model, alongside ordinary individuals and truth values. For rea-
sons that will become clear shortly, we will use i , j , k, and o as
variables over assignments.

We assume that every assignment maps every name to the rel-
evant individual in the domain. By contrast, discourse referents
can be mapped by different assignments to different individuals.
Treating names and discourse referents in similar ways and giving
them the same type allows us to let pronouns and other anaphoric
expressions behave in a uniform way regardless of whether their
antecedents are proper names or indefinites.

CDRT assignments are similar to the assignment functions that
we introduced in Chapter 4 in that they keep track of which sym-
bols stand for which entities. One can think of an assignment as
a register that gets updated throughout the discourse. Expres-
sions that can act as potential antecedents, such as indefinites,
update the values of discourse referents in assignments, and ex-
pressions such as pronouns and definite descriptions retrieve the
values of discourse referents. While each assignment is taken to
be immutable (like a book that has been published and whose text
cannot be edited anymore), we can simulate the process of mak-
ing a change to an assignment by finding another assignment that
is just like the first in all relevant respects other than the relevant
change. This is encapsulated in the following definition:

(29) Definition
Let i and o be two assignments and r a discourse refer-
ent. We write i[r1]o to say that i and o differ at most in
the value they assign to r (i.e., either i and o agree on ev-
erything except r or they do not differ at all).

There are also differences between assignments in the sense of
this chapter and assignment functions as we used them in Chap-
ter 4. Assignments in this chapter are contained in the domain
of our models, just like individuals, truth values, predicates, re-
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lations, and so on. By contrast, the assignment functions that
we used in Chapter 4 are not contained in our models; they are
used only as devices for interpreting predicate logic formulas. An-
other difference is that the assignments in this chapter apply to
discourse referents (of type r ) while the assignment functions in
Chapter 4 apply to variables of type e.

The semantics of sentences in CDRT In Section 9.2, the differ-
ence between static and dynamic semantics was summarized as
follows: Whereas in static semantics, the denotation of a sentence
corresponds to a set of world-assignment pairs, the denotation
of a sentence in dynamic semantics corresponds to a binary re-
lation between world-assignment pairs. Keeping the world con-
stant for simplicity, we can say that the denotation of a sentence
(its context-change potential) corresponds to a curried binary re-
lation between assignments. Conceptually, a context-change po-
tential is like a DRS. Formally, context-change potentials have the
type ⟨r e,⟨r e, t⟩⟩; we will abbreviate this type as T and we will use
the letters p and q for variables that range over context-change
potentials. We will call the first argument to a context-change
potential the input assignment and its second element the out-
put assignment, and we will use the letters i and o to symbolize
them. By convention, we use the leftmost lambda slot for i and
the second-to-leftmost one for o. CDRT extends this view to every
subconstituent down to individual words, so that every lexical en-
try takes two assignments i and o as its arguments in addition to
whatever other arguments it applies to. The grammar will be set
up so that this property is passed up to larger constituents all the
way up to sentences.

For example, consider again the discourse in (25), repeated
here with discourse referents added. Following standard prac-
tice in dynamic semantics, discourse referents are superscripted
in those places where they get introduced into the discourse, and
subscripted in those places where they get picked up again. For
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convenience and following common practice in dynamic seman-
tics, we have assumed that anaphoric links in sentences have al-
ready been resolved via coindexing before semantic interpreta-
tion takes place. This assumption helps us keep things simple
to understand because it lets us treat pronouns as essentially de-
noting discourse referents; it is not crucial, and we could, instead
let pronouns denote variables over discourse referents (Muskens,
2011).

(30) a. Ar1 dog bit ar2 woman.
b. Sher2 hit himr1 with ar3 paddle.
c. Itr3 broke in half.
d. Ther1 dog ran away.

The context-change potential of sentence (30a) consists in intro-
ducing two discourse referents r1 and r2, and updating the con-
text such that whichever entity r1 refers to is a dog, and whichever
entity r2 refers to is a woman that was bitten by r1. In models
where more than one dog and/or more than one woman fits the
description, there will be more than one way to update the con-
text. This suggests that the context-change potential is properly
thought of as a relation between input and output contexts, rather
than a function from input to output contexts. To keep things
readable, from this point onwards for any assignment j and dis-

course referent r , we will write the lookup operation j(r1) as r j
1 .

Formally, sentence (30a) denotes the following context-change
potential:

(31) λiλo .∃ j . i[r1] j ∧ j [r2]o
∧Dog(r o

1 )∧Woman(r o
2 )∧Bite(r o

1 ,r o
2 )

In words, this is (the curried version of) the relation that holds
between any two assignments i and o just in case they differ at
most in what they assign to r1 and r2, and furthermore o maps r1

to some dog and r2 to some woman whom that dog bit.
In a model where indeed a dog bit a woman, this relation will
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be nonempty. To take an example at random, in a model that cor-
responds to World 1 in Section 9.2, in which Pug bit Joan, the fol-
lowing pair of assignments i1 and o1 will stand in the relation (31):

i1 =
⎡⎢⎢⎢⎢⎢⎣

r1 → Bill
r2 → Bill
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
o1 =

⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
The values that i1 assigns to r1 and r2 are irrelevant, and so is

the value that both i1 and o1 assign to r3. These values have been
filled in only for concreteness. Many other assignments than i1

and o1 stand in the relation denoted by (31). For example, since
the values that the input assignment assigns to r1 and r2 are irrele-
vant, i1 and o1 could be replaced by any other pair of assignments,
so long as they map r3 to the same value as each other and the sec-
ond assignment still maps r1 and r2 to the same values as o1 does.
This means that the relation (31) will relate any input assignment
to at least one output assignment. We will say that a relation that
relates i to some output assignment succeeds on i (otherwise it
fails on i ); thus, the relation (31) succeeds on every input assign-
ment.

The next sentence, (30b), denotes the following context-change
potential:

(32) λiλo . i[r3]o∧Hit-with(r o
2 ,r o

1 ,r o
3 )∧Paddle(r o

3 )

This relation holds between assignments i and o just in case they
differ at most in what they assign to r3, and furthermore o maps
r3 to some paddle which was used by whatever o assigns to r2 in
order to hit whatever o assigns to r1.

What kinds of assignments stand in this relation? Since o and i
must agree in everything except possibly r3, they must both assign
the same value to r1, and likewise for r2. As for r3, it does not
matter what i assigns it to, but o must assign it to the right kind of
paddle.

For example, consider again a model that is like World 1, where
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Joan hit Pug with Paddle. Suppose that no other hittings took
place. In this model, for two assignments i2 and o2 to stand in the
relation (32), i2 must be exactly as below except that r3 could also
be mapped to any other value than Mary; and o2 must be exactly
as given below.

i2 =
⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
o2 =

⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Paddle

⎤⎥⎥⎥⎥⎥⎦
Because of the constraints it imposes, the relation (32) does

not succeed on every input assignment. In general, CDRT uses
such relations as denotations of sentences that contain unresolved
anaphoric dependencies (e.g. unbound pronouns such as Sher2

and himr1 in (30b)).
Typically, the previous discourse will supply input assignments

on which such sentences succeed. For example, the pronouns in
(30b) have their antecedents in the previous sentence (30a).

To connect pronouns with their antecedents, we now com-
bine the two denotations (31) and (32) by an operator called se-
quencing and written as a semicolon (;). This operator is intro-
duced here as a shorthand:

(33) ; =de f λpλqλiλo .∃ j . p(i)( j)∧q( j)(o)

This operator, which is present in many programming languages,
takes two context-change potentials p and q and combines them
to a new one which asserts that some assignment j can serve as
both the output of p and the input of q . Mathematically, this
amounts to composing the relations p and q ; in procedural terms,
this amounts to letting the output assignments of p serve as the
input assignments of q . For example, the output assignment o1

above is the same as the input assignment i2; therefore, i1 and o2

will stand in the relation denoted by sequencing (31) with (32).
That relation is the following:
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(34) λiλo∃ j∃k . i[r1] j ∧ j [r2]k
∧Dog(r k

1 )∧Woman(r k
2 )∧Bite(r k

1 ,r k
2 )

∧ k[r3]o∧Hit-with(r o
2 ,r o

1 ,r o
3 )∧Paddle(r o

3 )

In prose and simplifying a bit, this relation holds between two as-
signments i and o just in case o is the result of making minimal
changes to i such that r1, r2, and r3 are mapped to a dog, a woman
that it bit, and a paddle that she hit it with.

Bridging principles Context-change potentials are relations be-
tween input assignments and output assignments. But we are
used to thinking of sentences as simply being true or false. To
know whether a given sentence is true or false in a model, we
can convert its context-change potential into a truth value via the
following bridging principles. The first bridging principle defines
truth and falsity relative to an assignment:

(35) Bridging Principle 1
Let i be an assignment and φ be a term of type T (i.e. a
context-change potential). φ is true relative to i iff there
is an assignment o such that i[φ]o is true; otherwise φ is
false relative to i .

The idea behind this principle is that if we only care whether a
sentence is true given its input assignment, and not about whether
it provides potential antecedents to subsequent sentences, then it
does not matter what output assignments it produces.

For sentences without unresolved anaphoric dependencies,
i.e. sentences without pronouns or definite descriptions in them,
we can also define truth and falsity simpliciter by universally quan-
tifying over input assignments:

(36) Bridging Principle 2
Let φ be a term of type T without unresolved anaphoric
dependencies. φ is true iff it is true relative to every input
assignment (in the sense of Bridging Principle 1); other-
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wise it is false.

The idea here is that if a sentence is true in the intuitive sense,
then we expect it to remain true no matter what input assignment
we present it with.

In combination, the upshot of these two principles is that a
context-change potential without unresolved anaphoric depen-
dencies is true just in case it maps every input assignment to some
output assignment. For example, according to these principles,
the context-change potential in (34) is true just in case for every
assignment i there is an assignment o that is just like i except that
it maps r1, r2, and r3 to a dog, a woman that it bit, and a paddle
that she hit it with. Now suppose that indeed there exist a dog, a
woman, and a paddle such that the dog bit the woman and the
woman hit the dog with the paddle. Then for any input assign-
ment i such an output assignment o can be obtained by changing
i as needed so that it maps r1 to the dog, r2 to the woman, and r3

to the paddle.
The reason that Bridging Principle 2 is restricted to sentences

that do not have unresolved anaphoric dependencies is in order
to avoid collapsing the truth conditions of pronouns and corre-
sponding universals. Without this constraint, a sentence like (37a)
would have the same truth conditions as Heraclitus’ famous apho-
rism in (37b).

(37) a. Itr1 is in flux.
b. Everything is in flux.

This is because (37a) is true relative to any input assignment that
maps r1 to something in flux. Suppose now that everything is in
flux; then, and only then, every assignment whatsoever will map
r1 to something in flux. Suppose instead that some things are in
flux and others aren’t; in that case, some assignments will map r1

to something in flux, while others will not. Accordingly, (37a) will
be true (in the sense of Bridging Principle 1) with respect to some
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assignments but not others.
There is an intuitive connection between sentences with un-

resolved anaphoric dependencies in CDRT and formulas with free
variables in predicate logic. Both can be true with respect to some
assignments and false with respect to others. More generally, the
input assignments in CDRT play an analogous role to the assign-
ment functions in predicate logic.

Lexical entries for CDRT One of the advantages of using the
lambda calculus to express context-change potentials is that we
can now rely on it to generate them compositionally in the usual
way. To do this, we equip each lexical entry with two extra slots λi
and λo. For those lexical entries that do not introduce new dis-
course referents, we add a conjunct that requires i = o; otherwise
almost any pair of assignments could serve as input and output
and anaphoric information would be lost. For example, here are
some nouns and intransitive verbs:

(38) a. woman↝λxλiλo . i = o∧Woman(x)
b. dog↝λxλiλo . i = o∧Dog(x)
c. run-away↝λxλiλo . i = o∧Run-away(x)

The type of these entries is ⟨e,T⟩ (recall that we use T to abbreviate
⟨⟨r,e⟩,⟨⟨r,e⟩, t⟩⟩, the type of context-change potentials).

Proper nouns simply denote the relevant individuals, as usual:

(39) John↝ john

Indefinites introduce discourse referents r by operating on the in-
put assignment i and by using an intermediate assignment j that
is constrained to differ from i at most in r . They also take a restric-
tor R and a nuclear scope N , both of type ⟨e,T⟩, pass the value of
r according to j to R and N and link them up via sequencing.

(40) ar1 ↝λRλNλiλo∃ j . i[r1] j ∧(R( jr ); N( jr ))( j)(o)
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For the sake of readability, from here on we will write φ(i)(o) as
i[φ]o, for any formula φ of type T; thus this above simplifies as
follows:

(41) ar1 ↝λRλNλiλo∃ j . i[r1] j ∧ j [R( jr ); N( jr )]o

We can also spell out the sequencing shorthand to make things
clearer:

(42) ar1 ↝λRλNλiλo∃ j .
i[r1] j ∧∃k . j [R( jr )]k ∧k[N( jr )]o

Using this entry and two instances of function application, sen-
tence (43a) evaluates to (43b), which is equivalent to (43c) due to
the equivalences between assignments:

(43) a. Ar1 dog ran away.
b. λiλo .∃k . i[r1] j ∧∃k .Dog( jr )∧ j = k

∧Run-away( jr )∧k = o
c. λiλo . i[r1]o∧Dog(r o

1 )∧Run-away(r o
1 )

That (43b) is so much more complicated than (43c) is due to the
fact that neither the restrictor nor the nuclear scope of the indefi-
nite a in (43a) happen to contain any indefinites or anything else
that introduces discourse referents. In general, though, this is not
always the case; and this is also the reason for the sequencing op-
erator in (41). The point of sequencing R and N is to preserve any
anaphoric links from within R into N , such as the link between a
donkey and it in examples like the following:

(44) Ar1 [Restr farmer who had ar2 donkey] [Nucl beat itr2 ].

Before we get to such examples, we will build up the rest of our lex-
icon as we need it for our toy discourse. Consider first pronouns.
We will ignore gender and case features and simply treat them as
devices that query an input assignment for the value of the dis-
course referent they are indexed with. We could let the pronoun
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just return this value, but this would prevent them from combin-
ing with predicates such as verb phrases; such predicates expect
an individual, not a relation between assignments and individu-
als. To remedy this, we let the pronoun take its predicate as an ad-
ditional argument. (This is called Montague-lifting the pronoun;
we will discuss it in more detail in Chapter 10 under the heading
entity-to-quantifier shift.). Here, P is of type ⟨e,T⟩; thus, the type
of any pronoun is ⟨⟨e,T⟩,T⟩. In general, all noun phrases in CDRT
are of this type.

(45) her1 /himr1 /sher1 /herr1 /itr1 ↝λPλiλo . i = o∧ i[P(ir )]o

For example, (46a) denotes (46b):

(46) a. Itr1 ran away.
b. λiλo . i = o∧Run-away(ir )

Pronouns can also be indexed with names rather than discourse
referents. Recall that our model contains names like r john that ev-
ery assignment maps to the relevant individual, so that for any
assignment i we have ir john =John. This means that (47a) is equiv-
alent to (47b):

(47) a. her john ↝λPλiλo . i = o∧ i[P(ir john)]o
b. her john ↝λPλiλo . i = o∧ i[P(john)]o

Turning now to definite descriptions, we assume following Heim
(1982b) that they behave just as anaphoric pronouns do, except
that they come with additional descriptive content. Formally, def-
inite determiners combine with a restrictor and a nuclear scope,
which are both applied to the entity they refer to.

(48) ther1 ↝λRλNλiλo∃ j . i[R( jr )] j ∧ j [N( jd)]o

Consider now a transitive verb such as bite. Following the same
reasoning as before, we arrive at the following lexical entry:
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(49) Preliminary entry
bite↝λyλxλiλo . i = o∧Bite(x, y))

This entry cannot combine with noun phrases, since they are of
type ⟨⟨e,T⟩,T⟩ rather than e. To avoid this type mismatch, we ap-
ply type shifting to the lexical entries of transitive and ditransitive
verbs (for convenience, hit with is treated as if it was a ditransis-
tive verb). To do so, we use the Hendriks schema presented in
Section 7.4.2 to generate an Object Raising rule that is adapted for
the dynamic setting. This results in the following entry. Here, Q is
of type ⟨⟨e,T⟩,T⟩.

(50) Final entry
bite↝λQλx .Q(λyλiλo . i = o∧Bite(x, y))

In the same way, we can use Hendriks’ schema to lift the direct
and indirect objects of ditransitive verbs:

(51) Preliminary entry
hit-with↝λyλzλxλiλo . i = o∧Hit-with(x, y, z)))

(52) Final entry
hit-with↝λQ′λQλx .
Q′(λyλiλo . i = o∧Q(λzλiλo . i = o∧Hit-with(x, y, z)))

Using these entries, we can generate context change poten-
tials for the sentences in (30). We have already seen the context-
change potentials for (30a) and (30b) in (31) and (32). The one
for (30c) is analogous to the one in (46b), and the one for (30d) is
similar.

Exercise 4. Using the appropriate CDRT lexical entries, give a
compositional derivation of the context change potential of Sen-
tence (30d). Show the details of the derivation. Use equivalences
between assignments to simplify the result as much as possible in
the same manner shown in (43b) and (43c).
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Exercise 5. We have seen how the context change potentials of
sentences (30a) and (30b) can be combined using sequencing, as
well as some examples of assignments that can serve as inputs
and outputs to each of these sentences, with the output of (30a)
serving as input to (30b). Do the same for the transitions from
(30b) to (30c), and from (30c) to (30d). Using repeated sequenc-
ing, produce a context-change potential for the entire discourse.
Paraphrase its truth conditions. Explain how anaphoric depen-
dencies are realized and preserved.

An advantage of CDRT is that negation and conditionals do
not require us to define any special composition rules. We can rely
on function application for these operators just as for any other
lexical entry. The following entry for not assumes the VP-internal
subject hypothesis:

(53) not↝λpλiλo . i = o∧¬∃ j . i[p] j

Exercise 6. Modify this entry so that it is able to combine with a
subject of type ⟨⟨e,T⟩,T⟩ along with a VP that expects a subject of
that type.

This entry limits the lifespan of discourse referents in its scope
so that they are no longer available for pronouns in subsequent
sentences to pick up:

(54) Paul does not own ar1 donkey. #Itr1 is grey.

Using analogous lexical entries to the ones we have already seen,
we combine the transitive verb with the indefinite object and get
the following:
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(55) own ar1 donkey
↝λxλiλo .∃ j . i[r1] j ∧Donkey( jr1)∧Owns(x, jr1)

After combining with the subject, we get:

(56) Paul owns ar1 donkey
↝λiλo . . i[r1]o∧Donkey(r o

1 )∧Owns(paul,r o
1 )

This context-change potential relates any two assignments i and
o just in case they differ at most in r , in such a way that o maps r
to a donkey that Paul owns.

The bridging principles in (35) and (36) have the effect that
this is true just in case there exist an assignment i and an assign-
ment o that stand in this relation.

Negation now applies and converts this into a context-change
potential that requires i and o to be identical, and furthermore en-
sures that there is no assignment that is like i aside from mapping
r to a donkey Paul owns:

(57) not(Paul owns ar1 donkey)
↝λiλo . i = o∧¬∃ j . i[r1] j ∧Donkey( jr1)∧Owns(paul, jr1)

The bridging principles have the effect that this is true just in case
there is an assignment i such that for no assignment o is it the
case that i differs from o at most in that o maps r to a donkey
Paul owns. That is to say, there is an assignment i such that every
assignment o differs from i in more than the fact that o maps r to
a donkey Paul owns.

This chapter has only given a taste of dynamic semantics, enough
to show that it has the power to deal smoothly with the appar-
ently variable force of indefinites. Geurts & Beaver (2011) provide
a more thorough overview, including more on the notion of ‘ac-
cessiblity’, which constrains the ‘lifespan’ of discourse referents.
The interested student is encouraged to start there and work back-
wards from the references cited there.
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10.1 Coordination

Let us now consider coordination in more detail. We may include
sentences with and and or among the well-formed expressions of
our language by extending our syntax and lexicon as follows:

(1) Syntax
S → S CoordP
CoordP → Coord S

(2) Lexicon
Coord: and, or

To translate these into the lambda calculus, we can simply write
the following (here, p and q are variables over truth values):

(3) a. andS ↝λqλp .[p ∧q]
b. orS ↝λqλp .[p ∨q]

This will work for coordinations of sentences. For example, here
is a tree for John smokes and Mary drinks:
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(4) S
t

[smokes(j)∧drinks(m)]

S
t

smokes(j)

NP
e
j

John

VP
⟨e, t⟩

λx .smokes(x)

smokes

CoordP
⟨t , t⟩

λp .[p ∧drinks(m)]

Coord
⟨t ,⟨t , t⟩⟩

λqλp .[p ∧q]

and

S
t

drinks(m)

NP
e
m

Mary

VP
⟨e, t⟩

λx .Drinks(x)

drinks

Sentences are not the only kinds of expressions that can be
coordinated, though. Here are a few examples:

(5) a. Somebody smokes and drinks. (VP and VP)
b. No man and no woman laughed. (DP and DP)
c. Susan caught and ate the fish. (V and V)

It is clear that we need to extend our grammar. Since these exam-
ples do not cover all the possibilities, it will not do to introduce
fixes to the syntax and semantics one at a time. Instead, we need
to formulate a general pattern and then extend our syntax and se-
mantics according to it.

How shall we analyze the semantics of coordination? An early
style of analysis consisted in analyzing all coordinations as un-
derlyingly sentential, even those of constituents other than sen-
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tences. For example, VP coordination was analyzed as involving
deletion of the subject of the second sentence (indicated here as
strikethrough):

(6) a. John smokes and drinks.
b. John smokes and John drinks.

It was soon found that this would not work. If VP coordination
really was sentential coordination in disguise, then all VP coordi-
nations should be semantically equivalent to their sentential rel-
atives. This may be the case for simple sentences, as above. But
quantifiers break this equivalence. The following two sentences
are not paraphrases, as their translations into logic show.

(7) a. Somebody smokes and drinks.
∃x .[smokes(x)∧Drinks(x)]

b. Somebody smokes and somebody drinks.
[∃x .smokes(x)∧∃x .Drinks(x)]

(8) a. Everybody smokes or drinks.
∀x .[smokes(x)∨Drinks(x)]

b. Everybody smokes or everybody drinks.
[∀x .smokes(x)∨∀x .Drinks(x)]

Exercise 1. For each of the two sentence pairs above, establish
that they are not equivalent by describing a scenario in which one
of them is true and the other one is false.

Luckily, it is also possible to design a grammar in which coor-
dinated constituents are directly generated syntactically, and di-
rectly interpreted semantically. We can extend the syntax by pairs
of rules of the following kind, one pair for each category:

(9) Syntax
X → X CoordP
CoordP → Coord X
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where X ∈ {S, VP, DP, V,. . .}

The semantic side is trickier. It is not obvious if we can give a
single denotation for each conjunction that covers all of its uses
across categories. So we will first look at a few cases individually,
and then generalize over them. For VP coordination, the following
entries for and and or will do:

(10) a. andVP ↝λP ′λPλx .[P(x)∧P ′(x)]
b. orVP ↝λP ′λPλx .[P(x)∨P ′(x)]

This tree shows the entry for and in action. The result is what we
want: the quantifier somebody takes scope over and.

(11) S
t

∃x .[smokes(x)∧Drinks(x)]

NP
⟨⟨e, t⟩, t⟩

λP∃x .P(x)

Somebody

VP
⟨e, t⟩

λx .[smokes(x)∧Drinks(x)]

VP
⟨e, t⟩

λx .smokes(x)

smokes

CoordP
⟨⟨e, t⟩,⟨e, t⟩⟩

λPλx .[P(x)∧Drinks(x)]

Coord
⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩

λP ′λPλx .[P(x)∧P ′(x)]

and

VP
⟨e, t⟩

λx .Drinks(x)

drinks

What about coordinations of transitive verbs, as in Sue loves and
hates John? Assuming that transitive verbs translate to expres-
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sions of type ⟨e,⟨e, t⟩⟩, that is, (Schönfinkelized) binary relations,
the version of and that should be used to coordinate them should
take two binary relations and return a new binary relation. The
following entries will do that trick.

(12) a. andV ↝λR′λRλyλx .[R(y)(x)∧R′(y)(x)]
b. orV ↝λR′λRλyλx .[R(y)(x)∨R′(y)(x)]

Given loves and hates, these lexical entries will produce a new re-
lation, ‘loves and hates’.

Exercise 2. Using the lexical entry for and above, draw the tree for
Susan caught and ate the fish.

Noun phrase coordination (that is, coordination of DPs) can
be approached in the same way. Let us first look at conjunctions
of quantifiers:

(13) a. Every man and every woman laughed.
∀x .[man(x)→ laughed(x)]∧
∀x .[woman(x)→ laughed(x)]

b. A man or a woman laughed.
∃x .[man(x)∧ laughed(x)]∨
∃x .[woman(x)∧ laughed(x)]

Since quantifiers have a higher type, they take verb phrases as
arguments. This makes the entries for and and or very similar to
their VP-coordinating counterparts:

(14) a. andDP ↝λQ′λQλP .[Q(P)∧Q′(P)]
b. orDP ↝λQ′λQλP .[Q(P)∨Q′(P)]

Exercise 3. Using the lexical entries above, draw the trees for Every
man and every woman laughed and A man or a woman laughed.
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In all of the examples so far, the two constituents being coor-
dinated were of the same semantic type. That is not always the
case. As the following example shows, a type-e noun phrase like
John can be coordinated with a type-⟨⟨e, t⟩, t⟩ noun phrase.

(15) John and every woman laughed.

The translation we should obtain for this sentence is as follows:

[laughed(j)∧ [∀x .woman(x)→ laughed(x)]]

In order to be able to reuse the lexical entry above, and in order
to avoid deviating from the pattern we have established so far, we
will adjust the type of John to make it equal to that of every woman.
For this purpose, we introduce a new type-shifting rule that intro-
duces a possible translation of type ⟨⟨e, t⟩, t⟩ for every translation
of type e:

Type-Shifting Rule 4. Entity-to-quantifier shift
If α↝ α′, where α′ is of type e, then α can also be translated
as follows:

λP .P(α′)

This rule, which goes back to Montague (1974b) and has made
a brief appearance in Chapter 9, is also called Montague-lift. It
encapsulates the insight that an individual x can be recast as the
set of all the properties that x has. Essentially, the rule inverts
the predicate-argument relationship between the subject and the
verb phrase of a sentence. For example, if John↝ j then also John
↝λP .P( j). That translation is of type ⟨⟨e, t⟩, t⟩. It denotes a func-
tion that maps predicates to truth values. Any predicate that holds
of John is within the characteristic set of this function. In a sen-
tence like John laughed, this function takes the verb phrase deno-
tation as an argument. In a sentence like John and every woman
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laughed, we are able to conjoin this function with every woman
using the entry andDP. The resulting coordinated DP denotation
can combine with any verb phrase, or if it occurs in nonsubject
position, the resulting type mismatch can be repaired using the
mechanisms from Chapter 7 (either QR or further type-shifting).

Exercise 4. Draw the tree for John and every woman laughed and
derive a semantic interpretation for it compositionally.

Exercise 5. Draw a tree for John and Sue smoke and give a deriva-
tion that results in:

[smokes(j)∧ smokes(m)]

You will need to apply the type shifter once on each conjunct.

We are now ready to generalize over syntactic categories. This
is done by defining a single operator ⊓ that generalizes over all
these categories and then translating and as ⊓ (and similarly for
disjunction and a corresponding operator ⊔). All of the entries for
conjunction and for disjunction have ∧ and ∨ at their core respec-
tively. And all of them operate on types that end in t , namely ⟨e, t⟩
for VP coordination, ⟨e,⟨e, t⟩⟩ for coordination of transitive verbs,
and ⟨⟨e, t⟩, t⟩ for DP coordination. The following recursive defini-
tions will work for every type that ends in t .

(16) ⊓⟨τ,⟨τ,τ⟩⟩

={λqλp . p ∧q if τ = t

λXτλYτλZσ1 . ⊓⟨σ2,⟨σ2,σ2⟩⟩ (X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩
(17) ⊔⟨τ,⟨τ,τ⟩⟩

={λqλp . p ∨q if τ = t

λXτλYτλZσ1 . ⊔⟨σ2,⟨σ2,σ2⟩⟩ (X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩
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For more details on this approach, see for example Partee & Rooth
(1983) and Winter (2001).

Here is how the schema in (16) derives DP-coordinating and.
The type of DP (after lifting entities to quantifiers if necessary) is
⟨⟨e, t⟩, t⟩. So the type of DP-coordinating and is ⟨τ,⟨τ,τ⟩⟩, where
τ = ⟨⟨e, t⟩, t⟩. Since τ /= t , we look for σ1 and σ2 such that τ =
⟨σ1,σ2⟩. This works for σ1 = ⟨e, t⟩ and σ2 = t . We plug in these
definitions into the last line of (16) and get:

(18) λX⟨⟨e,t⟩,t⟩λY⟨⟨e,t⟩,t⟩λZ⟨e,t⟩ . ⊓⟨t ,⟨t ,t⟩⟩ (X (Z))(Y (Z))

To resolve⊓⟨t ,⟨t ,t⟩⟩, we apply Definition (16) once more. This time,
τ = t , so the result is simply logical conjunction:

(19) ⊓⟨t ,⟨t ,t⟩⟩ =λqλp . p ∧q

We plug this into the previous line and get the final result:

(20) λX⟨⟨e,t⟩,t⟩λY⟨⟨e,t⟩,t⟩λZ⟨e,t⟩ .Y (Z) ∧ X (Z)

This is indeed equivalent to our entry for DP-coordinating and in
(14a). The entry will only work if both DPs are of type ⟨⟨e, t⟩, t⟩.
If necessary, one or both DPs may need to be lifted into that type
first by applying the type shifter above.

Exercise 6. Show how the schema can be applied to VP-
coordination.

10.2 Collective predication and mereology

All of the occurrences of and that we have seen so far can be re-
lated to the denotation of logical conjunction. This is not always
the case, though. Consider the following example.

(21) John and Mary are a happy couple.
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There is no obvious way to formulate the truth conditions of (21)
using logical conjunction. It cannot be represented as:

[happy-couple(j)∧happy-couple(m)]

since this would entail happy-couple(j) as well as happy-couple(m).
In other words, it would have the entailments that John is a happy
couple and that Mary is a happy couple. These are obviously non-
sensical because a singular individual can’t be a couple. Only two
people can form a happy couple. Predicates like be a couple are
called COLLECTIVE. They apply to collections of individuals di-
rectly, without applying to those individuals. In this sentence,
then, the word and does not seem to amount to logical conjunc-
tion but to the formation of a collection, in this case, the “collec-
tive individual” John-and-Mary.

Another example of collective predication was given by Link
(1983a), at the beginning of his paper. He writes:

The weekly Magazine of the German newspaper
Frankfurter Allgemeine Zeitung regularly issues Mar-
cel Proust’s famous questionnaire which is answered
each time by a different personality of West German
public life. One of those recently questioned was Rudolf
Augstein, editor of Der Spiegel; his reply to the ques-
tion: [“Which property of your friends do you appre-
ciate the most?”] was . . . “that they are few”.

Clearly, this is not a property of any one of Augstein’s
friends; yet, even apart from the esprit it was designed
to display the answer has a straightforward interpre-
tation. The phrase . . . predicates something collectively
of a group of objects, here: Augstein’s friends.

To talk about such collections, we need to extend our formal
setup. On the semantic side, we will add collections of individ-
uals to our model. You might suspect that we would represent
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these collections as sets, so that John and Sue would be repre-
sented as the set that contains just these two individuals. Instead,
we will extend our formal toolbox by borrowing from MEREOLOGY,
the study of parthood. There are many reasons for this choice.
One is that using mereology for this purpose has been standard
practice in formal semantics since Link (1983b). Another reason
is that set theory makes formal distinctions that turn out not to be
needed in mereology. Where set theory is founded on two rela-
tions (∈ and ⊆), mereology collapses them into one, the parthood
relation. This relation holds both between John and John-and-Sue
(where in set theory, we would use ∈), and also between John-and-
Sue and John-and-Sue-and-Mary (where in set theory, we would
use ⊆). Mereology also provides an operator, ⊕, that allows us to
put individuals together to form collections. The formal objects
that represent these collections in mereology are called SUMS. For
example, the collection John-and-Sue is represented formally as
John⊕Sue. This sum is not a set, but rather an individual, albeit
an individual that has parts. Collective predicates apply directly to
such sums. For example, in the sentence John and Sue are a happy
couple, the phrase happy couple can be translated as a predicate of
type ⟨e, t⟩ that can be truthfully predicated of the sum John⊕Sue,
as that sum is an object in the domain corresponding to type e.

In mereology, the domain can be organized into an algebraic
structure. An algebraic structure is essentially a set with a binary
operation (in this case, the part-of relation) defined on it. Figure
10.1 illustrates such a structure. The circles stand for the indi-
vidual Andrews Sisters Maxine, LaVerne, and Patty, and for the
sums that are built up from them. We will use the word INDI-
VIDUAL to range over all the circles in this structure. We will re-
fer to Maxine, LaVerne, and Patty, as ATOMIC INDIVIDUALS; the
other circles stand for individuals which are not atomic. In mere-
ology, the terms ATOM and ATOMIC refer to anything which does
not have any parts other than itself; they are technical terms that
do not necessarily coincide with physical or metaphysical notions
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of what is an atom. For semantic purposes, it is common to as-
sume that individuals that can be described with a singular count
noun are atoms. By this criterion, any human being is treated as
an atom; so is any hand, and any committee, with no mereologi-
cal parthood relation holding between these entities (as opposed
to the matter that constitutes them).

In Figure 10.1, the lines between the circles stand for the part-
hood relations that hold between the various individuals. We will
assume that parthood is reflexive, transitive, and antisymmetric,
or as it is called in mathematics, a “partial order”. Reflexivity means
that everything is part of itself. Reflexivity is an axiom that governs
the notion of parthood:

(22) Axiom of reflexivity
∀x[x ≤ x]
(Everything is part of itself.)

Reflexivity may not be intuitive but it is a mere formal convenience,
and it can be eliminated by defining a distinct notion of proper
parthood: a is a proper part of b just in case a is both part of and
distinct from b.

(23) Definition: Proper part
x < y

def= x ≤ y ∧ x /= y
(A proper part of a thing is a part of it that is distinct from
it.)

(So the lines in the diagram represent the proper parthood rela-
tions among the individuals depicted.)

Transitivity means that if a is part of b and b is part of c, then
a is also part of c. Among the axioms of the system we develop in
this chapter is that the parthood relation is transitive:

(24) Axiom of transitivity
∀x∀y∀z[x ≤ y ∧ y ≤ z→ x ≤ z]
(Any part of any part of a thing is itself part of that thing.)
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For example, according to Figure 10.1, Maxine is part of Maxine⊕LaVerne,
and Maxine⊕LaVerne is part of Maxine⊕LaVerne⊕Patty; there-
fore, by transitivity, Maxine is also part of Maxine⊕LaVerne⊕Patty.

Finally, antisymmetry means that two distinct things cannot
both be part of each other.

(25) Axiom of antisymmetry
∀x∀y[x ≤ y ∧ y ≤ x→ x = y]
(Two distinct things cannot both be part of each other.)

This condition is very intuitive. For example, since Maxine is part
of Maxine⊕LaVerne, it follows that Maxine⊕LaVerne is not part of
Maxine. Together, the axioms of reflexivity, transitivity, and anti-
symmetry constrain parthood to be a partial order.

Figure 10.1: An algebraic structure.
Abbreviations: m = Maxine; l = Laverne; p = Patty.

m l p

ml mp l p

ml p

The notion of sum can be defined in terms of this parthood
relation as follows:

(26) Binary sum
x⊕ y = that individual k such that
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•x ≤ k,

•y ≤ k,

•there is no k′ < k such that x ≤ k′ and y ≤ k′.

So far we have been using the symbols ⊕ and ≤ as part of the
meta-language, because we are referring directly to the correspond-
ing operation and relation that our models now provide. We will
also have a way of referring to these concepts in the representa-
tion language. The new representation language will be an exten-
sion of L∂ that supports talk of parts and sums; let us refer to it as
L∗.

Models for our L∗ furnish a part-of relation ≤, which in turn
determines a sum operation⊕, along with a domain and an inter-
pretation function. The parthood symbol and sum symbols can
be imported into our representation language as follows:

Semantic rule: Parthood
If α and β are expressions of type e and M determines the
individual-part relation ≤:

Jα ≤βKM ,g ={ T if JαKM ,g ≤ JβKM ,g

F otherwise

Semantic rule: Sum
If α and β are expressions of type e and M determines the sum
operation ⊕:

Jα⊕βKM ,g = JαKM ,g ⊕ JβKM ,g .
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Exercise 7. Formulate an additional lexical entry for andDP that
conjoins two entities of type e and returns their sum. Draw the
tree for John and Sue met.

10.3 The plural

10.3.1 Algebraic closure

Coordinations of proper nouns are not the only way to talk about
sums:

(27) a. Maxine, LaVerne and Patty met.
b. Some singers met.
c. Three singers met.
d. The singers met.

In each of these three sentences, the collective predicate met ap-
plies to a sum x. Only (27a) fully specifies the parts of that sum,
while (27b) through (27d) describe it partially. That is, the sen-
tence specifies that they are all singers, but not their precise iden-
tities.

Just like the predicate met, the plural noun singers can be seen
as denoting a predicate that applies to the sum x. What is the de-
notation of the noun singers? One way to describe it is in terms of
the conditions it imposes on x, namely, singers requires it to be the
sum of some singers. In general, the denotation of a plural noun
can be described in terms of the denotation of its corresponding
singular noun. If we take P to be the set of all the entities in the
denotation of the singular noun, then the plural noun denotes the
set that contains any sum of things taken from P .

In order to make this notion precise, we need a way of talking
about the sum of a set of things. So far, all we have is a binary
sum operator ⊕ that puts together two individuals. The sum of
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any nonempty set of individuals S is always the lowest individual
that sits above every element of S. (This corresponds to the math-
ematical notion of “least upper bound”.) For example, if S con-
sists of the two atomic individuals Maxine and LaVerne, then the
lowest individual that sits above these two is Maxine⊕LaVerne.
Sometimes the sum of S can be a member of S. For example, if S
consists of Maxine and Maxine⊕LaVerne, Maxine⊕LaVerne again.
And if S consists of just one individual, such as Patty, then its sum
is that individual itself (or himself or herself). The sum operation
that applies to sets is sometimes called GENERALIZED SUM (as op-
posed to binary sum). We use ⊕S to denote the sum of a set S,
and define it as follows:

(28) Definition: Generalized sum
Relative to a given model M determining the part relation
≤, given a nonempty set S ⊆De ,

⊕S
def= the individual k in De such that:

(i) for all x ∈ S, x ≤ k;
(ii) there is no k′ < k such that for all x ∈ S, x ≤ k′.

As the use of the definite article the in this definition suggests,
this definition depends on the fundamental assumption that any
nonempty set of individuals has one and exactly one sum.

It will be useful to have a symbol of the representation lan-
guage corresponding to the notion of generalized sum that ap-
plies to expressions of type ⟨e, t⟩ and produces new expressions
of that type. For doing so, it is convenient to have a way of no-
tating the characteristic set of a function. Let Set(P) denote the
characteristic set of P , so Set(P) = {x ∣ P(x) =T}.

Semantic rule: Generalized sum
If π is an expression of type ⟨e, t⟩, then:
J⊕πKM ,g =⊕Set(JπKM ,g )
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Every expression of the form⊕π is of type e, denoting a possibly-
plural individual. Such expressions therefore act as terms; they
can serve as the argument to a predicate, and we will see examples
of this below.

The plural morpheme can be treated semantically using the
notion of algebraic closure, which builds on the notion of gener-
alized sum. The ALGEBRAIC CLOSURE ∗S of a set S is the set that
contains, for each non-empty subset S′ of S, the sum of S′.

(29) Definition: Algebraic closure
∗S

def= {x ∣ there exists S′ s.t. S′ ≠∅ and S′ ⊆ S and x =⊕S′}

We define a corresponding symbol in the representation language
that applies to expressions of type ⟨e, t⟩ and produces a new ex-
pression of type ⟨e, t⟩ denoting the predicate that holds of an in-
dividual if it is in the algebraic closure of the set characterized by
the input predicate. We use Fun(S) to denote the characteristic
function of a set S (the function f such that f (x) =T just in case
x ∈ S).

Semantic rule: Star operator
If π is an expression of type ⟨e, t⟩, then:
J∗πKM ,g = Fun(∗Set(JπKM ,g ))

In other words, if S is the characteristic set of JπKM ,g , then J∗πKM ,g

is the characteristic function of ∗S. This symbol can be referred to
as the STAR OPERATOR.

A simple theory of the plural morpheme -s as in girls is that it
takes as input a predicate of individuals and outputs a new pred-
icate that holds of any individual in the algebraic closure of the
input predicate. In other words, the plural introduces a star oper-
ator:

(30) Lexical entry: Plural
-s↝λP .∗P
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For example, suppose that we are in a model with just three singers,
Maxine, LaVerne and Patty. Then the denotation of the noun singer
might be modeled as {m, l , p}, where m is short for Maxine, l is
short for LaVerne, and p is short for Patty. The denotation of the
noun singers is (loosely speaking) the algebraic closure of that set:

{m, l , p,m⊕ l ,m⊕p, l ⊕p,m⊕ l ⊕p}

This set contains everything that is either a singer or a sum of
two or more singers. It might seem strange to include individ-
ual singers in this set. After all, it sounds strange to say Maxine
are singers, and the sentence Some doctors are in the room is false
if only one doctor is in the room. And indeed, Link himself pro-
posed excluding them. But this leads to a different problem: It
makes singers essentially synonymous with two or more singers.
But this leads to the wrong predictions in downward-entailing en-
vironments. For example, No doctors are in the room is not syn-
onymous with No two or more doctors are in the room. Consider
the case where a single doctor is in the room. Here only one of the
two sentences is true. For this reason we will continue to use (30)
as the denotation of the plural, and rule out Maxine are singers
on pragmatic grounds. That is, singers literally means one or more
singers. Sentences like *John is singers and *John are singers are
assumed to be ruled out on syntactic or pragmatic rather than on
semantic grounds.

Link gave plural individuals the status of first-class citizens in
the logical representation of natural language. That is, they be-
long to De and are not treated differently from atomic individuals.
This allowed him to represent collective predicates like meet as
predicates that apply directly to sum individuals:

(31) a. Maxine, LaVerne, and Patty met. ↝meet(mx⊕ l⊕p)
b. Some singers met.↝ ∃x .[∗singer(x)∧meet(x)]

As seen in (31a), Link represented sentential conjunction in a dif-
ferent way than noun phrase conjunction. This has the conse-
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quence that even the translations of equivalent sentences can look
very different:

(32) a. Maxine is a singer and LaVerne is a singer.
↝ [singer(mx)∧ singer(l)]

b. Maxine and LaVerne are singers.
↝ ∗singer(mx⊕ l)

Exercise 8. Draw trees for the sentences in (31) and (32b), using
the appropriate entries for and in each case. You can use the same
entry for some as in Chapter 6. Assume that is, a and are denote
identity functions, or treat them as vacuous nodes. Make sure that
the result is as in (31) and (32b).

10.3.2 Plural definite descriptions

Now, supposing that singers denotes a predicate that holds of any
singer-plurality, what does the singers denote? If the singers is
translated as:

ιx .∗singer(x)

then a presupposition failure will arise as long as there is more
than one singer, because more than one individual will satisfy the
predicate ∗singer.1 How can this problem be remedied?

One possible solution is to give a different kind of analysis for
plural the, where it refers to the sum of the individuals that satisfy
that predicate given by the noun, rather than the unique individ-
ual that satisfies it.

The plural definite article can then be treated as denoting this
sum operator:

(33) theSUM ↝ λP .⊕P

1This was pointed out by Sharvy (1980).
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Later we will consider a different version of the; the subscript SUM

is there to distinguish this version of the from the other one we
will consider. Combined with singers, this yields:

(34) theSUM singers↝⊕∗singer(x)

In a model where the singers are Maxine, LaVerne and Patty, (34)
denotes {m, l , p,m⊕ l ,m⊕p, l ⊕p,m⊕ l ⊕p}. As can be checked
with Figure 10.1, the sum of this set, and therefore the denotation
of the singers, is just m⊕ l ⊕p. This seems like a sensible denota-
tion.

But in other cases, such as the singer and the two singers, we
run into a problem. To see this, let us first establish some assump-
tions about how phrases like two singers are interpreted. Suppose
that two denotes the property of being a sum of exactly two atomic
individuals (for which we will write card(x) = 2), and that it com-
bines with singers via Predicate Modification:

(35) two↝ λx .card(x) = 2

Then two singers will translate as follows:

(36) two singers↝ λx .[card(x) = 2∧∗singer(x)]

In our model, the set characterized by two singers is {m⊕ l ,m⊕
p, l ⊕p }.

Exercise 9. In order to deal with sentences like Two singers met, we
can assume that there is a silent determiner with the semantics of
a generalized existential quantifier:

∅D ↝λPλP ′ .∃x .[P(x)∧P ′(x)]

Give a derivation for Two singers met using this assumption. Don’t
forget to include the silent determiner in the tree diagram.
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Now, what about the two singers? If we use theSUM from above,
then we will get the sum of the two-singer pluralities. As a glance
at Figure 10.1 will confirm, this sum is m⊕ l ⊕p. We have applied
the condition card(x) = 2 only to the pluralities being summed up,
and not to the result of this summing-up operation. So we end up
with the rather odd prediction that the two singers refers to this
sum!

Exercise 10. Translate TheSUM singers met and TheSUM two singers
met.

Exercise 11. In the model where the singers are Maxine, LaVerne,
and Patty, what (if anything) do the expressions theSUM singer,
theSUM singers, theSUM two singers and theSUM three singers denote?
In each case, explain which presupposition arises and whether it
is satisfied.

Which of these cases does this theory of plural the make the
correct predictions for?

Intuitively, the two singers should give rise to a presupposition
failure, because there are three singers in our model. We must
build a source of presupposition failure into our denotation for
the plural definite. Let us therefore interpret the P as the single
individual of which P holds that contains every other individual
of which P also holds:2

2The supremum theory was originally proposed by Sharvy (1980), and later,
perhaps independently, by Krifka 1986. Champollion & Krifka (2016) write that
the Krifka (1986) proposal builds on a suggestion in Montague 1973, reprinted
eight years after Montague’s death in 1971 as Montague 1979, but the suggestion
there is not quite the supremum theory. Thanks to Ivano Caponigro for help
with these scholarly references.
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(37) theSUPR↝ λP ιx[P(x)∧∀y[P(y)→ y ≤ x]]

We call it this because under this theory, the denotes the SUPRE-
MUM of the P ’s: the unique P (if there is one) that contains all
other P ’s. In structures like the one depicted in Figure 10.1, we
can check whether a given set of individuals P has a supremum
by checking whether there is an element of P that sits above every
element of P other than itself. This is the same procedure as the
one for determining the sum of P , with one exception: in the case
of the supremum of P , we check if the result is an element of P ,
while in the case of the sum of P , we skip this check.

It turns out that this representation even works for the singular
definite article. In any model where there is exactly one singer, the
set denoted by singer is a singleton, and since everything is part of
itself, the representation in (37) picks out the only member of that
singleton. In all other models, the ι operator will not be defined.

Exercise 12. Translate TheSUPR singers met and TheSUPR two singers
met. This exercise can be solved in the Lambda Calculator.

Exercise 13. In the model where the singers are Maxine, LaVerne,
and Patty, what (if anything) do the expressions theSUPR singer,
theSUPR singers, theSUPR two singers and theSUPR three singers
denote? In each case, explain which presupposition arises and
whether it is satisfied.

Which of these cases does this theory of plural the make the
correct predictions for?
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10.4 Cumulative readings

So far, we have seen two kinds of predicates that apply to sums:
plural nouns like singers, and collective predicates like met. These
are one-place predicates. Sums can also be related by two-place
predicates, as in the following sentences:

(38) a. The men in the room are married to the women across
the hall. (Kroch, 1974)

b. 600 Dutch firms use 5000 American supercomputers.
(adapted from Scha, 1981)

c. Maxine, LaVerne and Patty (between them) own (a to-
tal of) four toothbrushes.

Let us take a closer look at the ways the plural entities in these
sentences are related. Sentence (38a) is true in a scenario where
each of the men in the room is married to one of the women across
the hall, and each of the women is married to one of the men.
(This might seem to be the only available scenario in which the
sentence is true, but this is an effect of Western social/legal norms
rather than a linguistic effect. One can easily imagine polygamous
societies where other scenarios can be described by this sentence.
All that is required for the sentence to be true is that each of the
people in the room is married to at least one of the people across
from them.) Sentence (38b) (on its relevant reading) is true in
a scenario where there are a collection of 600 Dutch firms, and
a collection of 5000 American supercomputers, such that each
of the firms uses one or more of the supercomputers, and each
of the computers is used by one or more of the firms. Sentence
(38c) is true in a scenario where Maxine, LaVerne and Patty own
toothbrushes in such a way that a total of four toothbrushes are
owned. A widespread view is that these scenarios correspond to
genuine readings of these sentences, rather than special circum-
stances under which they are true. These readings are then called
cumulative readings.
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Just like distributive readings, cumulative readings can be mod-
eled via algebraic closure. The idea is that if Maxine owns tooth-
brush t1, LaVerne owns toothbrush t2, and Patty owns toothbrush
t3 and also toothbrush t4, then the sum of Maxine, LaVerne and
Patty stands in the algebraic closure of the owning relation to the
sum of the four toothbrushes. In order to formalize this, we need
to generalize the definition of algebraic closure from sets (which
correspond to one-place predicates) to n-place relations (which
correspond to n-place predicates). We’ll focus on the case of a bi-
nary (2-place) relation, but the definition can be generalized to
relations of arbitrary arity.

(39) Definition: Sum of a set of pairs
If R is a set of pairs, then the sum of R, written⊕R, is the
pair whose first element is the sum of the first elements,
and whose second element is the sum of the second ele-
ments.

(40) Definition: Algebraic closure of a set of pairs
If R is a set of pairs, then the algebraic closure ∗R of R is
the set containing any sum of any nonempty subset of R.

The corresponding symbol in the representation language is de-
fined as follows:

Semantic rule: Relational star operator
If π is an expression of type ⟨e,⟨e, t⟩⟩, then:
J∗πKM ,g = that function R such that for all a,b ∈De ,
R(a)(b) =T iff ⟨a,b⟩ ∈ ∗{⟨x, y⟩ ∣ JπKM ,g (x)(y) =T}

We can then represent cumulative readings by using the alge-
braic closure of transitive verbs:

(41) Maxine, LaVerne and Patty own four toothbrushes. ↝
∃x .∗toothbrush(x)∧card(x) = 4∧∗own(m⊕ l⊕p, x)
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An example model which verifies formula (41) is the one described
above, where Maxine owns toothbrush 1, LaVerne owns tooth-
brush 2, and Patty owns toothbrushes 3 and 4. The pairs in the re-
lation denoted by “own” are ⟨Maxine, t1⟩, ⟨LaVerne, t2⟩, ⟨Patty, t3⟩
and ⟨Patty, t4⟩. The sum of these four pairs is ⟨Maxine⊕Laverne⊕
Patty, t1⊕ t2⊕ t3⊕ t4⟩. So there is indeed a value for x that makes
the scope of the existential claim true, namely t1⊕ t2⊕ t3⊕ t4.

10.5 Summary

In this chapter, we have extended the syntax and semantics of our
logic in order to adapt it to the new entities and relations we have
added. Our new representation language is called L∗.

10.5.1 Logic syntax

The syntax of L∗ is defined as in three-valued type logic (L∂), plus
rules introducing the part-of relation, the binary sum operator,
the generalized sum operator, and the unary and binary algebraic
closure operators.

1. Parthood
If α and β are terms, i.e. expressions of type e, then α ≤β is
an expression of type t .

2. Binary sum
If α and β are terms, i.e. expressions of type e, then α⊕β is
an expression of type e.

3. Sum of a set
If π is an expression of type ⟨e, t⟩, then⊕π is an expression
of type ⟨e, t⟩.

4. Closure of a predicate
If π is an expression of type ⟨e, t⟩, then ∗π is an expression
of type ⟨e, t⟩.
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5. Closure of a relation
If π is an expression of type ⟨e,⟨e, t⟩⟩, then ∗π is an expres-
sion of type ⟨e,⟨e, t⟩⟩.

We write α <β ‘alpha is a proper part of beta’ as an abbreviation
for α ≤β∧α ≠β ‘alpha is a part of beta and alpha is distinct from
beta’.

10.5.2 Logic semantics

A model for L∗ is a based on D is a 4-tuple

⟨(Dτ)τ∈T ,⟨(Dτ)+τ∈T , I ,≤⟩

where:

• (Dτ)τ∈T is a standard frame based on D

• (Dτ)+τ∈T is an augmented frame based on D

• for every type τ ∈ T , I assigns to every non-logical constant
of type τ an object from the domain D+

τ .

• ≤ is a partial order over De .

The last bullet is the new; the other three are carried over from
Chapter 8.

We have defined a number of notions based on the part-of re-
lation:

• Generalized sum
Relative to a given model M determining the part relation
≤, given a set S ⊆De ,

⊕S
def= the individual k in De such that:

(i) for all x ∈ S, x ≤ k;
(ii) there is no k′ < k such that for all x ∈ S, x ≤ k′.
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• Algebraic closure of a set of individuals
∗S

def= {x ∣ there exists S′ s.t. S′ ≠∅ and S′ ⊆ S and x =⊕S′}

• Sum of a set of pairs
If R is a set of pairs, then the sum of R, written⊕R, is the
pair whose first element is the sum of the first elements, and
whose second element is the sum of the second elements.

• Algebraic closure of a set of pairs
If R is a set of pairs, then the algebraic closure ∗R of R is the
set containing any sum of any nonempty subset of R.

• Characteristic set
Set(P) = {x ∣ P(x) =T}.

Based on these definitions, we have laid out the following se-
mantic rules for the new symbols of the representation language.

• Parthood
If α and β are expressions of type e and M determines the
individual-part relation ≤:

Jα ≤βKM ,g ={ T if JαKM ,g ≤ JβKM ,g

F otherwise

• Binary sum
If α and β are expressions of type e and M determines the
part-of relation ≤:

Jα⊕βKM ,g = JαKM ,g ⊕ JβKM ,g .

• Generalized sum
If π is an expression of type ⟨e, t⟩, then:
J⊕πKM ,g =⊕Set(JπKM ,g )

• Star operator
If π is an expression of type ⟨e, t⟩, then:
J∗πKM ,g = that function f such that
for all x ∈De , f (x) =T iff x ∈ ∗{y ∣JπKM ,g (y) =T}
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• Relational star operator
If π is an expression of type ⟨e,⟨e, t⟩⟩, then:
J∗πKM ,g = that function R such that for all a,b ∈De ,
R(a)(b) =T iff ⟨a,b⟩ ∈ ∗{⟨x, y⟩ ∣ JπKM ,g (x)(y) =T}

10.5.3 English syntax

Syntax rules. We add the following rules for coordination:

(42) Syntax
X → X CoordP
CoordP → Coord X
where X ∈ {S, VP, DP, V,. . .}

In addition, we add the following rule for the plural:

N → N Pl

Lexicon. Lexical items are associated with syntactic categories
as follows:

D: ∅D

A: two, three etc.
Coord: and, or
Pl: -s
V: met, own

10.5.4 Translations

Words of English will be translated into L∗ as follows. We keep the
same composition rules as in previous chapters.

Type ⟨e, t⟩:

1. smokes↝λx .∗smokes(x)

2. drinks↝λx .∗drinks(x)

3. two↝ λx .card(x) = 2
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Type ⟨e,⟨e, t⟩⟩:

1. caught ↝λyλx .∗catch(y)(x)

2. ate↝λyλx .∗eat(y)(x)

3. own↝λyλx .∗own(y)(x)

Type e:

1. John↝ j

2. Sue↝ s

3. Mary↝m

4. Maxine↝mx

5. LaVerne↝ l

6. Patty↝ p

Type ⟨t ,⟨t , t⟩⟩:

1. andS ↝λqλp . p ∧q

2. orS ↝λqλp . p ∨q

Type ⟨⟨e, t⟩,⟨e, t⟩⟩:

1. is, a↝λP .P

Type ⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩:

1. andVP ↝λP ′λPλx .P(x)∧P ′(x)

2. orVP ↝λP ′λPλx .P(x)∨P ′(x)

Type ⟨⟨e,⟨e, t⟩⟩,⟨⟨e,⟨e, t⟩⟩,⟨e,⟨e, t⟩⟩⟩⟩:

1. andV ↝λR′λRλyλx .R(y)(x)∧R′(y)(x)
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2. orV ↝λR′λRλyλx .R(y)(x)∨R′(y)(x)

Type ⟨⟨e, t⟩,e⟩:

1. the↝λP . ιz[P(z)∧∀x[P(x)→ x ≤ z]]

Type ⟨⟨e, t⟩,⟨e, t⟩⟩:

1. -s↝λP .∗P

Type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩:

1. ∅D ↝λPλQ .∃x .[P(x)∧Q(x)]
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11 ∣ Event semantics

11.1 Why event semantics

One of the advantages of translating natural language into logic is
that it helps us account for certain entailment relations between
natural language sentences. Suppose that whenever a sentence A
is true, a sentence B is also true. If the translation of A logically
entails that of B , then we have an explanation for this entailment.
Take the following sentences:

(1) a. John smokes and Mary drinks.
b. ∴ John smokes.

This argument is captured by the following logical entailment:

(2) a. [smokes(j)∧drinks(m)]
b. smokes(j)

In every model where (2a) is true, also (2b) is true.
This pattern of inference – a longer sentence entails a shorter

one – also shows up in other places. Adverbial modification is one
example.

(3) a. Jones buttered the toast slowly.
b. ∴ Jones buttered the toast.

Here is how we would translate (3a) given the previous chap-
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ters (we are treating the toast as if it was a constant rather than a
definite description, but nothing will hinge on this):

(4) butter(j,t)

If this representation is correct, (3a) is about only two entities:
Jones and the toast. Which entity does slowly describe in (3a)? Is it
perhaps Jones who is slow? Then we might translate that sentence
as follows:

(5) [butter(j,t)∧ slow(j)]

Since (5) logically entails (4), we have an account of the entailment
from (3a) to (3b). But there is a problem. If we represent (3a) as
(5), clearly we ought to translate (6a) as (6b), by analogy.

(6) a. Jones buttered the bagel quickly.
b. [butter(j,b)∧quick(j)]

But then, in any model where (5) and (6b) are both true, the
following will also be true as a matter of logical consequence!

(7) [slow(j)∧quick(j)]

Unless we want to countenance the possibility that Jones is both
slow and quick at the same time, our account clearly has a prob-
lem.

One might think that the slowness is not a property of Jones,
but of whatever Jones buttered the toast denotes. This would lead
us to a translation of (3a) like this:

(8) slow(butter(j,t))

In the system we have been developing so far, there is a problem
with this idea too. The denotation of the subformula butter(j,t)
is a truth value, and correspondingly, its type is t . Since the con-
stant slow in (8) is predicated of that subformula, it has to denote
a function whose input type is t . And if the entire formula (8) is
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to denote a truth value, the output type of slow is t as well, and its
type as a whole must be ⟨t , t⟩. But there are only two truth values
(setting aside the undefined truth value), so there are only four
functions of that type: the identity function, negation, the func-
tion that maps both truth values to T, and the function that maps
both truth values to F. None of these functions captures the truth
conditions of slow.

So slow cannot have the type ⟨t , t⟩. What if it has the type
⟨et ,et⟩, and applies to the VP buttered the toast and then to Jones?

(9) slow(λx .butter(y,t))(j)

The problem with this approach is that it does not explain the pat-
tern of inference shown in (3). Depending on what slow denotes
in any given model, the entailment from Jones buttered the toast
slowly to Jones buttered the toast may or may not hold. We can
remedy this by stipulating a meaning postulate to the effect that
whenever a property P that holds of an individual x is modified
by slow, it still holds of x:

(10) ∀P∀x .slow(P)(x)→ P(x)

But this is no more than a stopgap measure. It is analogous to
what we did in Chapter 7 when we gave intersective adjectives,
such as reasonable and vegetarian, the type ⟨et ,et⟩ and accounted
for their intersectivity by a meaning postulate. In that chapter, we
also saw that we can give intersective adjective a simpler type in-
stead, and remove the need for a meaning postulate. The solution
we are about to adopt is analogous.

In an influential paper, Davidson (1967) suggested that it is
not Jones but the action – or, as we will say, the event – of but-
tering the toast that is slow in (3a). On Davidson’s view, events
are taken to be concrete entities with locations in space and in
time, and natural language provides means to provide informa-
tion about them, refer to them, etc. Although not all sentences
that are about events necessarily provide explicit clues to that ef-
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fect, some do. For example, the subjects in these two sentences
arguably have an event as their referent (Parsons, 1990a):

(11) a. Jones’ buttering of the toast was artful.
b. It happened slowly.

So let us assume that in (3a) it is the event of buttering the
toast that is slow, and in (6a) it is the event of buttering the bagel
that is quick, rather than Jones himself. The two sentences, then,
are not only talking about Jones and the things he is buttering but
also about the buttering events. According to Davidson (1967),
the correct logical representations for (3a) and (6a) are not (5) and
(6b) but rather something like the following:

(12) a. ∃e .[butter(j,t,e)∧ slow(e)]
b. ∃e .[butter(j,b,e)∧quick(e)]

Here, the variable e stands for an event, and the existential quanti-
fier that binds it ranges only over events, and not over individuals.
Correspondingly, we introduce a new basic type for events, along-
side the type e of individuals and the type t of truth values. Since
the letter e is already taken, it is common to use v for the type of
events, as we will do here. (In some papers, the type of events is
also written ε.)

A sentence like (3b) would then be represented as:

(13) ∃e .butter(j,t,e)

There is a logical entailment from (12a) to (13), as desired. But
unlike before, the conjunction of (12a) and (12b) no longer entails
that something is both slow and quick at the same time, since the
two formulas could (and typically will) be true in virtue of differ-
ent events.

Adverbs like quickly and slowly are not the only phenomena
in natural language that have been given an event semantic treat-
ment – far from it. Here are a few other examples.
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Prepositional adjuncts. Adjuncts like in the kitchen and at noon
can be dropped from ordinary true sentences without affecting
their truth value. Moreover, when a sentence has multiple adverbs
and adjuncts then one or more can be dropped. In these respects,
they behave just like the adverbs quickly and slowly that we have
already seen:

(14) a. Jones buttered the toast slowly in the kitchen at noon.
b. ∴ Jones buttered the toast slowly in the kitchen.
c. ∴ Jones buttered the toast slowly.
d. ∴ Jones buttered the toast.

Event semantics provides a straightforward account of these
entailment patterns:

(15) a. ∃e .butter(j,t,e)∧ slow(e)∧ loc(e,k)∧ time(e,noon)
b. ∃e .butter(j,t,e)∧ slow(e)∧ loc(e,k)
c. ∃e .butter(j,t,e)∧ slow(e)
d. ∃e .butter(j,t,e)

Direct perception and causation reports. Since events are con-
crete entities with a location in spacetime, it stands to reason that
we can see and hear them, and that they can be involved in causal
relations. This idea can be exploited to give semantics of direct
perception reports and causation reports (Higginbotham, 1983):

(16) a. John saw Mary leave.
b. ∴Mary left.

(17) a. John made Mary leave.
b. ∴Mary left.

(18) a. ∃e∃e′ .see(j,e′,e)∧ leave(m,e′)
b. ∃e′ . leave(m,e′)

(19) a. ∃e∃e′ .cause(j,e′,e)∧ leave(m,e′)
b. ∃e′ . leave(m,e′)
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Here, e is the event of John seeing or causing something, and e′

is the event seen or caused by John—that is, the event of Mary
leaving.

The relation between adjectives and adverbs. If adverbs ascribe
properties to events, it is plausible to assume that the same is true
of adjectives that are derivationally related to these adverbs (Par-
sons, 1990a):

(20) a. Brutus stabbed Caesar violently.
b. ∴ Something violent happened.

(21) a. ∃e .stab(b,c,e)∧violent(e)
b. ∃e .violent(e)

11.1.1 The Neo-Davidsonian turn

As we have seen, Davidson equipped verbs with an additional event
argument. Later authors, however, have taken the event to be the
only argument of the verb (e.g. Castañeda, 1967; Parsons, 1990a).
The relationship between this event and syntactic arguments of
the verb is then expressed by a smallish number of semantic rela-
tions with names like AGENT, THEME, INSTRUMENT, and BENEFI-
CIARY. These relations represent ways entities take part in events
and are generally called THEMATIC ROLES. The first occurrence of
thematic roles is as the six kāraka relations in the As.t.ādhyāyı̄, a
precise formal grammar of Classical Sanskrit created nearly 2500
years ago by Daks.iputra Pān. ini, arguably the first descriptive lin-
guist. In modern times, two influential works are Gruber (1965)
and Jackendoff (1972). This came to be known as “Neo-Davidsonian”
event semantics. Thematic roles describe semantic relations be-
tween events and their participants in terms that generalize across
many verbs. For example, the agent initiates and carries out the
event; the theme undergoes the event and does not have control
over the way it occurs; the instrument is manipulated by an agent
and is used to perform an intentional act; the beneficiary is po-
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tentially advantaged or disadvantaged by the event; and so on.
Additional thematic roles that specify the location of an event in
space and time are often proposed. For events of perception, one
finds the roles STIMULUS (the cause) and EXPERIENCER (the pa-
tient that is aware of the event undergone), and for motion events,
the roles SOURCE and GOAL for the initial and final points. The la-
bel PATIENT is sometimes used interchangeably with THEME, and
we will follow this convention here. Sometimes a distinction is
drawn between the two, in that patients undergo a change of state
as a result of an event but themes do not. There is no consen-
sus on the full inventory of thematic roles, but role lists of a large
number of English verbs have been compiled in Levin (1993) and
Kipper-Schuler (2005). An ISO standard for thematic roles is being
developed under the label ISO 24617-4:2014.

On the Neo-Davidsonian view, Jones buttered the toast might
be represented as follows:

(22) ∃e .butter(e)∧agent(e, j)∧ theme(e,t)

In Neo-Davidsonian event semantics, there is no fundamen-
tal semantic distinction between syntactic arguments such as the
subject and object of a verb, and syntactic adjuncts such as ad-
verbs and prepositional phrases. For example, in the following
representation of Jones buttered the toast with a knife, the con-
junct that represents the prepositional phrase is essentially par-
allel to those conjuncts that represent Jones and the toast. (For
simplicity, we represent a knife as if it was a constant. Just like in
the case of the toast, this is not essential.)

(23) ∃e .butter(e)∧agent(e, j)∧ theme(e,t)∧ instr(e,k)

The idea there is no fundamental semantic distinction between
syntactic arguments and adjuncts might not be immediately clear.
In what way is the prepositional phrase with a knife parallel to the
argument the toast? The following pair can make this clearer.
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(24) a. Mary loaded the truck with the hay.
b. Mary loaded the hay onto the truck.

Setting aside slight semantic differences between these two sen-
tences, their common semantic core can be expressed in the fol-
lowing way: there is a loading event whose agent is Mary, whose
goal (or location, on some accounts) is the truck, and whose theme
is the hay. This is expressed in the following translation:

(25) ∃e .Load(e)∧agent(e,m)∧goal(e,t)∧ theme(e,h)

The argument the truck in (24a) parallels the adjunct onto the truck
in (24b), and the adjunct with the hay in (24a) parallels the argu-
ment the hay in (24b).

One consequence of the lack of a semantic distinction between
arguments and adjuncts is that on the Neo-Davidsonian view, sen-
tences with too many or too few arguments are ungrammatical
but not semantically deviant. The following sentences can all be
assigned coherent event semantic translations, unlike in eventless
or classical Davidsonian semantics, where the number of seman-
tic arguments of a verb is fixed.

(26) a. John ate.
b. John ate the fish.
c. John dined.
d. *John dined the fish.
e. *John devoured.
f. John devoured the fish.

This aspect of Neo-Davidsonian event semantics has been jus-
tified in terms of the lack of any semantic distinction between
verbs with different subcategorization frames such as eat, dine,
and devour that could explain why the first is optionally intransi-
tive, the secondis obligatorily so, and the third obligatorily tran-
sitive. Whatever distinction there is between them must arguably
instead be attributed to syntax.
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One of the advantages of the Neo-Davidsonian view is that it
allows us to capture semantic entailment relations between dif-
ferent syntactic subcategorization frames of the same verb, such
as causatives and their intransitive counterparts (Parsons, 1990a):

(27) a. Mary opened the door.
b. ∴ The door opened.

(28) a. ∃e .open(e)∧agent(e,m)∧ theme(e,d)
b. ∃e .open(e)∧ theme(e,d)

The Neo-Davidsonian approach raises important questions,
many of which have been answered in different ways in the se-
mantic literature. Do semantic roles have syntactic counterparts?
If so, how should we think of them? For example, presumably the
thematic role of Mary in (29a) – perhaps beneficiary – matches the
one of Mary in (29b).

(29) a. Jane gave the ball to Mary.
b. Jane gave Mary the ball.

We might think of this role as the denotation of to in (29a),
but in (29b) there is no corresponding word we can point to. One
common perspective on thematic roles in generative syntax is that
when no preposition is around, they are assigned by (usually silent)
functional heads projected in the syntax, often called theta roles.
For example, a “little v” head is often assumed to relate verbs to
their external arguments, which are usually their agents; here the
little v head would be the theta role and the agent relation the the-
matic role (Chomsky, 1995). As another example, the preposition
with often serves as the theta role of the thematic role instrument.
We follow the textbook Carnie (2013) in using the term thematic
role for the semantic relation, and the term theta role for its syn-
tactic counterparts; however, some authors use these terms inter-
changeably.

Another question is whether each verbal argument (perhaps
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with the exception of dummy subjects as in It’s raining) corre-
sponds to exactly one role, or whether the subject of a verb like
fall is both the agent and the theme (or patient or experiencer)
of the event (Parsons, 1990a). Relatedly, it is often assumed that
each event has at most one agent, at most one theme, and so on.
(If the domain of individuals includes sums of individuals, as in
Chapter 10, it is common to assume that the domain of events in-
cludes sums of events as well. The agent of a sum of events is then
taken to be the sum of their agents, and similarly for other the-
matic roles.) This view, often called the unique role requirement
or thematic uniqueness, is widely accepted in semantics (Carlson,
1984; Parsons, 1990a; Landman, 2000). Thematic uniqueness has
the effect that thematic roles can be represented as partial func-
tions. This is often reflected in the notation, as in (30).

(30) ∃e .butter(e)∧agent(e) = j∧ theme(e) = t

A differing, less common view is based on the intuition that one
can touch a man and his shoulder in the same event (Krifka, 1992).
In this example, one could argue that there is a single touching
event that stands in the theme relation both to the man and to his
shoulder.

11.2 Aktionsart

So far we have been speaking of events, but not all sentences de-
scribe events. Some describe states, as in Ann knows French and
Zoe is in town. An overarching term that can describe both events
and states is ‘eventuality’. In a famous paper entitled Verbs and
Times, Vendler (1957) distinguished between four types of even-
tualities:

• States (example: know the answer) are static, extended in
time, and lack a natural end point.

• Activities (example: make sandcastles) are like states except
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they typically involve or lead to some kind of change.

• Accomplishments (example: run a mile) are like activities
except they have a natural end point.

• Achievements (example: reach the pier) are like accomplish-
ments except they are punctual rather than extended in time.

A fifth type, namely ‘semelfactives’, was later added (example: cough).
They are like achievements except they do not lead to a change.
These five types of aktionsart are categories of states or events—
EVENTUALITIES, to be neutral between state and event—with var-
ious different properties.1

One dimension along which these different eventuality types
differ is TELICITY. A telic eventuality has a natural endpoint; te-
los means ‘goal’ in Greek. Verb phrases denoting telic eventual-
ity types can be modified with in-adverbials such as in an hour.
Compare:

(31) a. Ida ran a mile in an hour. [accomplishment]
b. ??Ida made sandcastles in an hour. [activity]

Run a mile is telic, while make sandcastles is not: it is atelic.
Verb phrases denoting atelic eventualities, on the other hand,

are more natural in combination with for-adverbials such as for
an hour:

(32) a. ??Ida ran a mile for an hour. [accomplishment]
b. Ida made sandcastles for an hour. [activity]

States, activities and semelfactives are atelic, while accomplish-
ments and achievements are telic.

What distinguishes states from activities is that activities are
DYNAMIC (they require constant influx of energy) while states are
not. For example, making sandcastles or running along the beach

1Other words for ‘aktionsart’ include lexical aspect, situation aspect, internal
aspect, aspectual class, and situation type.
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requires energy, while having a friend does not. The state/non-
state distinction also has reflexes in the grammar. The progressive
in English does not combine well with stative predicates:

(33) a. Ida is running along the beach. [activity]
b. ??Ida is having a friend. [state]

Furthermore, the simple present tense gives rise to a habitual in-
terpretation only with non-stative predicates:

(34) a. Ida runs along the beach. [activity: habitual]
b. Ida has a friend. [state: non-habitual]

What distinguishes accomplishments from achievements and
semelfactives is that the former are DURATIVE while the latter are
conceptualized as taking place essentially at a single moment. This
contrast can be observed in conjunction with in phrases. To see
this, consider the following sentences:

(35) a. Ida will run a mile in 20 minutes. [accomplishment:
in = duration]

b. Ida will reach the pier in 20 minutes. [achievement:
in = after]

c. Ida will jump in 20 minutes. [semelfactive: in = after]

With the accomplishment run a mile, 20 minutes can measure the
duration of the running-a-mile event, while with the achievement
reach the pier and the semelfactive jump, 20 minutes can only
measure the time that will elapse before the event takes place.

Finally, what distinguishes achievements from semelfactives
is that the former involve a change of state while the latter do not.
Because semelfactives do not involve a change of state, they can
be iterated, and an iterative reading arises with for adverbials:

(36) a. Ida jumped for an hour. [semelfactive: iterative]
b. ??Ida reached the pier for an hour. [achievement]
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The idea of (36a) being iterative is that the sentence suggests that
Ida jumped multiple times within the hour. Repeated jumping is
an eventuality type that is atelic, unlike jumping once, which is
telic. The repetition induced by the for adverbial here can be seen
as a secondary operation on the denotation of the verb jump, tak-
ing it from its basic telic denotation to an atelic denotation involv-
ing iteration of the basic denotation.

The kind of eventuality being described can depend on the
object of the verb. For example, make sandcastles is atelic, while
make a sandcastle is telic. Thus it is not verbs but verb phrases
that are appropriate to classify with respect to their aktionsart.
But as we have just seen in the case of semelfactives, there may
be other elements in a sentence that help to determine the as-
pectual properties of the eventuality being described by the entire
sentence.

The properties of these five classes are summarized in Table
11.1, taken from Smith (1997):

Durative Dynamic Telic
State + - -
Activity + + -
Accomplishment + + +
Achievement - + +
Semelfactive - + -

Table 11.1: Types of eventualities

Henceforth, we may use the term ‘event’, but we generally mean
‘eventuality’.

11.3 Composition in Neo-Davidsonian event se-
mantics

Building Neo-Davidsonian semantics into our fragment requires
us to decide how events, event quantifiers, and thematic roles en-
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ter the compositional process. There is currently no universally
accepted way to settle the question. A common approach is that
verbs and verbal projections (such as VPs and IPs) denote predi-
cates of events and are intersected with their arguments and ad-
juncts, until an existential quantifier is inserted at the end and
binds the event variable (Carlson, 1984; Parsons, 1990a, 1995). A
more recent approach views this existential quantifier as part of
the lexical entry of the verb, and arguments and adjuncts as adding
successive restrictions to this quantifier (Champollion, 2015).

Both strategies are compatible with the idea that adjuncts and
prepositional phrases are essentially conjuncts that apply to the
same event. We discuss both of them here. The first approach is
more widespread and is sufficient for simple purposes, while the
second leads to a cleaner interaction with certain other compo-
nents of the grammar such as conjunction, negation and quanti-
fiers.

There are also other strategies that we will not discuss. For ex-
ample, Landman (1996) assumes that the lexical entry of a verb
consists of an event predicate conjoined with one or more the-
matic roles. Kratzer (2000) argues that verbs denote relations be-
tween events and their internal arguments while external argu-
ments (subjects) are related to verbs indirectly by theta roles.

11.3.1 Verbs as predicates of events

On the first strategy, verbs denote predicates of events:

(37) a. bark↝λe .bark(e)
b. butter↝λe .butter(e)
c. . . .

These lexical entries conform with the Neo-Davidsonian view
in that they do not contain any variables for the arguments of the
verb. Since these variables need to be related to the event by the-
matic roles, we need to provide means for these roles to enter the
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derivation. One way to do so is to allow each noun phrase a way
to “sprout” a theta role head θ.

(38) Syntax
DP → θ DP

We then write lexical entries that map these heads to suitable
roles:

(39) Lexicon
θ: [agent], [theme], . . .

At this point, we would normally need to make sure that the
right syntactic argument gets mapped to the right thematic roles.
For example, the subject is typically, but not exclusively, mapped
to the agent role. Operations such as passivization change the
order in which arguments get mapped to thematic roles. This is
what theories of argument structure are about (e.g. Wunderlich,
2012). We will ignore this problem here and simply assume that
each θ head gets mapped to the “right” role.

Next, we map these theta roles to thematic roles:

(40) a. [agent]↝λxλe .agent(e) = x
b. [theme]↝λxλe .theme(e) = x
c. . . .

Finally, we introduce an operation that existentially binds the
event variable at the sentence level. We can handle this operation
as a type-shifting rule. Here, and in what follows, v stands for the
type of events, so ⟨v, t⟩ is the type of an event predicate.

Type-Shifting Rule 5. Existential closure
If α↝α′, where α′ is of category ⟨v, t⟩, then:

α↝ ∃e .α′(e)
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as well (as long as e does not occur in α′; in that case, use a
different variable of the same type).

The quantifier that binds the variable e is called the EVENT

QUANTIFIER. It does not correspond to anything pronounced in
an English sentence.

A sample derivation that shows all of the elements we have in-
troduced is shown in (41). The subject and the verb phrase both
denote predicates of events, and combine via Predicate Modifica-
tion. The resulting event predicate is mapped to a truth value by
the Existential Closure type-shifting rule.

(41) S
t

∃e .bark(e)∧agent(e) = s
⇑

⟨v, t⟩
λe .bark(e)∧agent(e) = s

DP
⟨v, t⟩

λe .agent(e) = s

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
s

Spot

VP
⟨v, t⟩

λe .bark(e)

barks

The existential closure type-shifting rule applies at the root of the
tree. Since both VP and S have the same type, one might wonder
what prevents it from applying at VP. In that case, the type of VP
would be t and there would be no way for the subject to combine
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with it. As long as the syntax requires that a subject is present, this
derivation will not be interpretable.

Let us now add the adjunct slowly to our fragment. This ad-
verb is quite free in terms of where it can occur in the sentence:
before the sentence, between subject and VP, and at the end of the
sentence. This is captured in the following rules:

(42) Syntax
S → AdvP S
VP → AdvP VP
VP → VP AdvP
AdvP → Adv

(43) Lexicon
Adv: slowly

As we have seen above, slowly is interpreted as an event pred-
icate. Its lexical entry is therefore very simple:

(44) a. slowly↝λe .slow(e)

The tree in (45) shows the application of slowly. Like the sub-
ject and object, it is a predicate of type ⟨v, t⟩ and it combines with
its sister node via Predicate Modification:
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(45) S
t

∃e .butter(e)∧agent(e) = j
∧theme(e) = t∧ slow(e)

⇑
⟨v, t⟩

λe .butter(e)∧agent(e) = j
∧theme(e) = t∧ slow(e)

DP
⟨v, t⟩

λe .agent(e) = j

θ

⟨e,⟨v, t⟩⟩
λxλe .

agent(e) = x

[agent]

DP
e
j

Jones

VP
⟨v, t⟩

λe .butter(e)∧
theme(e) = t∧

slow(e)

VP
⟨v, t⟩

λe .butter(e)∧
theme(e) = t

V
⟨v, t⟩

λe .butter(e)

buttered

DP
⟨v, t⟩

λe .theme(e) = t

θ

⟨e,⟨v, t⟩⟩
λxλe .

theme(e) = x

[theme]

DP
e
t

the toast

AdvP
⟨v, t⟩

λe .slow(e)

slowly

In the derivation in (45), syntactic arguments do not change the
type of the verbal projections they attach to. This is a hallmark
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of Neo-Davidsonian event semantics. The object maps a predi-
cate of type ⟨v, t⟩ (the V) to another one that is also of type ⟨v, t⟩
(the VP). The subject maps a predicate of type ⟨v, t⟩ (the VP) to
another one that is also of type ⟨v, t⟩ (the S). This is very different
from what we have seen in previous chapters, where V, VP and S all
had different types (namely, ⟨e,⟨e, t⟩⟩, ⟨e, t⟩, and t respectively).
In Neo-Davidsonian semantics, syntactic arguments are seman-
tically indistinguishable (as far as types are concerned) from ad-
juncts, which map a VP of a certain type (here, ⟨v, t⟩) to another
VP of the same type and which do not change the type of the VP.

11.3.2 A formal fragment

Let us recapitulate the additions to our fragment. The syntax is
defined as in three-valued type logic (Lλ with three truth values as
in Chapter 8), plus the following additions:

Syntax rules. We add the following rule:

(46) Syntax
DP → θ DP

Lexicon. Lexical items are associated with syntactic categories
as follows:

θ: [agent], [theme], . . .

Types. As mentioned, we add a new basic type to the system: v ,
the type of events. Complex types are generated from this type
and the other two basic types (e and t ) in the usual way. For ex-
ample, ⟨v, t⟩ is the type of sets of events (or equivalently, functions
from events to truth values); ⟨v,e⟩ is the type of functions from
events to individuals; and so on.
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Translations. Verbs get new translations, and we add thematic
roles. We will use the following abbreviations:

• e is a variable of type v

• bark and butter are constants of type ⟨v, t⟩,

• agent, theme, and other thematic roles are constants of type
⟨v,e⟩. (To keep formulas readable, we depart from the prac-
tice we adopted in Chapter 4, and no longer require all func-
tion symbols to end in Of. In the literature, thematic roles
are also sometimes treated as two-place predicates rather
than as functions; we could have followed this approach
and written Theme(e, t) instead of theme(e) = t )

Type ⟨v, t⟩:

1. bark↝λe .bark(e)

2. butter↝λe .butter(e)

Type ⟨e,⟨v, t⟩⟩:

1. [agent]↝λxλe .agent(e) = x

2. [theme]↝λxλe .theme(e) = x

11.4 Quantification in event semantics

The system we have seen so far is sufficient for many purposes,
including the sentences discussed at the beginning of the chap-
ter. Most papers that use event semantics assume some version of
it, although the details differ. Things become more complicated,
though, when we bring in quantifiers like every cat and no dog. As
we have seen in Chapter 7, these quantifiers are able to take scope
in various positions in the sentence. We have seen that this can
be explained using quantifier raising or type-shifting. Since the
event variable is bound by a silent existential quantifier, we might
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expect that in this case too any overt quantifiers in the sentence
can take scope either over or under it. But this is not the case.
Rather, the event quantifier always takes scope below anything
else in the sentence. For example, sentence (47), read with neu-
tral intonation, is not ambiguous. Its only reading corresponds
to (48b), where the event quantifier takes low scope. As for (49b),
that is not a possible reading of the sentence.

(47) No dog barks.

(48) a. ¬[∃x .dog(x)∧∃e[bark(e)∧agent(e) = x]]
b. “There is no barking event that is done by a dog”

(49) a. ∃e .¬[bark(e)∧∃x[dog(x)∧agent(e) = x]]
b. “There is an event that is not a barking by a dog”

Exercise 1. How can you tell that (49b) is not a possible reading of
sentence (47)?

As it turns out, each of the two strategies for the interpretation
of quantifiers — quantifier raising and type-shifting — generates
one of these two formulas. Quantifier raising no dog above the
sentence level leads to the only available reading (48b), while ap-
plying Hendriks’ object raising rule (or rather, the general schema)
to the theta role head leads to the unavailable reading (49b). This
is shown in (50) and (51), respectively.
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(50) S
t

¬∃x[dog(x)∧∃e .bark(e)∧
agent(e) = x]

DP
⟨⟨e, t⟩, t⟩

λP¬∃x[dog(x)
∧P(x)]

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x

[P ′(x)∧P(x)]

no

N
⟨e, t⟩

λx .dog(x)

dog

λP
⟨e, t⟩

λv1∃e .bark(e)∧agent(e) = v1

1 S
t

∃e .bark(e)∧agent(e) = v1

⇑
⟨v, t⟩

λe .bark(e)∧agent(e) = v1

DP
⟨v, t⟩

λe .agent(e) = v1

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e

v1

t1

VP
⟨v, t⟩

λe .bark(e)

barks

Draft January 18, 2024



Event semantics 453

(51) S
t

∃e .bark(e)∧
¬∃x .dog(x)∧agent(e) = x

⇑
⟨v, t⟩

λe .bark(e)∧
¬∃x .dog(x)∧agent(e) = x

DP
⟨v, t⟩

λe¬∃x .dog(x)∧
agent(e) = x

θ

⟨⟨⟨e, t⟩, t⟩,⟨v, t⟩⟩
λQλe .Q(λx .
agent(e) = x)

⇑
⟨e,⟨v, t⟩⟩

λxλe .agent(e) = x

[agent]

DP
⟨⟨e, t⟩, t⟩

λP¬∃x .dog(x)
∧P(x)

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x .
P ′(x)∧P(x)

no

N
⟨e, t⟩

λx .dog(x)

dog

VP
⟨v, t⟩

λe .bark(e)

barks

The interim conclusion, then, is that event semantics seems
to commit us to a quantifier-raising based treatment of quantifi-
cational noun phrases.
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11.4.1 Verbs as event quantifiers

In the tree in (50), we needed to apply quantifier raising to no
dog in order to give it scope above the event quantifier, which
was introduced by the existential-closure rule at sentence level.
If the event quantifier was introduced lower than no dog, there
would be no need to raise it. This brings us to the second strat-
egy for the compositional treatment of event semantics, due to
Champollion (2014). As mentioned, on this approach, verbs come
equipped with their own event quantifiers. Verbs no longer de-
note event predicates but rather generalized existential quanti-
fiers over events. Instead of sitting at the edge of the sentence,
which results in the wrong relation as in Figure 11.1a, the event
quantifier is now made part of the lexical entry for the verb, as
in Figure 11.1b. This results in the right scope relation between
quantificational noun phrases and the event quantifier and re-
moves the need for quantifier raising. Champollion (2014) argues
that this is preferable for analyses of languages in which there are
no scope ambiguities, such as Chinese (Huang, 1981). For lan-
guages like English, both approaches are viable in principle.

S
∃e . . .Qx . . .

⇑
λe . . .Qx . . .

DP
. . .Qx . . .

VP
λe . . .

(a) ∃e introduced at S

S
Qx . . .∃e . . .

⇑
λ f . . .Qx . . .∃e . . .

DP
. . .Qx . . .

VP
λ f . . .∃e . . .

(b) ∃e introduced by verb

Figure 11.1: Comparison of two approaches to event semantics.
Note the position of the existential in each subfigure.

To implement this approach, we need to revise our seman-
tics. We will equip each verb with a variable f of type ⟨v, t⟩, a
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variable over sets of events. This variable will stand for the future
of the derivation, that is, for the semantic contributions of any
constituents (arguments and adjuncts) that are about to combine
with the verb. Variables that stand for the future of the derivation
are known as CONTINUATION VARIABLES (Barker & Shan, 2014). We
will include the event quantifier into the lexical entry for each verb
and give it scope over the variable f and thereby over any other
quantifiers that might be contributed over the future course of the
derivation. The new representations for verbs are as follows:

(52) a. bark↝λ f ∃e .bark(e)∧ f (e)
b. butter↝λ f ∃e .butter(e)∧ f (e)
c. . . .

Our grammar will continue to map verbal projections ( verbs,
VPs and Ss) to the same type. But this type is no longer ⟨v, t⟩ but
⟨⟨v, t⟩, t⟩. For this reason, we will no longer rely on predicate mod-
ification, but instead use function application to combine syntac-
tic arguments with verbal projections. This means that our the-
matic roles look more complicated than before:

(53) a. [agent]↝λxλV λ f .V (λe .agent(e) = x ∧ f (e))
b. [theme]↝λxλV λ f .V (λe .theme(e) = x ∧ f (e))
c. . . .

If the root of the tree is of type ⟨⟨v, t⟩, t⟩, we need to map it to
a truth value. In a simple case such as Spot barks, the root will be
true of any set of events f so long as f contains (possibly among
other things) an event that satisfies the relevant event predicate.
Whether this is true can be checked by testing whether the set of
all events whatsoever, λe .true, contains such an event:

(54) a. λ f ∃e[bark(e)∧ag(e) = s∧ f (e)](λe .true)
b. ∃e[bark(e)∧ag(e) = s∧(λe .true)(e)]
c. ∃e[bark(e)∧ag(e) = s∧ true]
d. ∃e[bark(e)∧ag(e) = s]
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After the type-⟨⟨v, t⟩, t⟩ expression at the root of the tree ap-
plies to λe .true, the result is of type t , as desired.

To formalize this idea, we introduce the type-shifting rule of
Quantifier Closure:

Type-Shifting Rule 6. Quantifier Closure
If α↝α′, where α′ is of category ⟨⟨v, t⟩, t⟩, then:

α↝α′(λe .true)

as well.

The full derivation of the sentence is shown in (55).

(55) S
t

∃e .bark(e)∧
agent(e) = s

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .bark(e)∧
agent(e) = s∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = s∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
s

Spot

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

bark(e)∧ f (e)

barks
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We are now ready to interpret a quantificational noun phrase.
This time, applying Hendriks’ raising schema to the theta role gives
the right result, as shown in (56). We do not need to apply quan-
tifier raising. This is as expected, because the quantifier is con-
tained in the entry for the verb, so the subject already takes syn-
tactic scope over it.
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(56) S
t

¬∃x .dog(x)∧∃e .bark(e)∧
agent(e) = x

⇑
⟨⟨v, t⟩, t⟩

λ f ¬∃x .dog(x)∧∃e .bark(e)∧
agent(e) = x ∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩
λV λ f ¬∃x .dog(x)∧

V (λe .agent(e) = x ∧ f (e))

θ

⟨⟨⟨e, t⟩, t⟩,
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩
λQλV λ f .

Q(λx .V (λe .
agent(e) = x
∧ f (e)))
⇑

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
⟨⟨e, t⟩, t⟩
λP¬∃x .

dog(x)∧P(x)

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x .
P ′(x)∧P(x)

no

N
⟨e, t⟩

λx .dog(x)

dog

V
⟨⟨v, t⟩, t⟩
λ f ∃e .

bark(e)∧ f (e)

barks

Let us now see how syntactic adjuncts, such as adverbs, are
treated on this approach. Just like syntactic arguments, adjuncts
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are combined with verbal projections using Function Application
instead of Predicate Modification. This makes the representations
of adverbs more complicated:

(57) a. slowly↝λV λ f .V (λe .slow(e)∧ f (e))
b. . . .

An example of a derivation that uses this adverb is shown in
(58). To save space, the VP buttered the toast is shown as a unit,
and as before, we pretend that the toast is a constant rather than a
definite description. Nothing of consequence would change if we
didn’t.
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(58) S
t

∃e .agent(e) = j∧butter(e)∧
theme(e) = t∧ slow(e)

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .agent(e) = j∧butter(e)∧
theme(e) = t∧ slow(e)∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = j∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
j

Jones

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

butter(e)∧ theme(e) = t
∧slow(e)∧ f (e)

V
⟨⟨v, t⟩, t⟩
λ f ∃e .

butter(e)∧
theme(e) = t∧ f (e)

buttered the toast

AdvP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .
V (λe .slow(e)∧ f (e))

slowly

From what we have seen so far, the choice between the two
approaches depends mainly on whether the preferred way to deal
with quantificational noun phrases is by quantifier raising or type
shifting. The next sections compare the two systems with respect
to two other phenomena, conjunction and negation.
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11.4.2 Another formal fragment

Let us recapitulate the additions to our fragment.The syntax is de-
fined as in three-valued type logic (Lλ with three truth values as in
Chapter 8), plus the following additions:

Syntax rules. We add the following rule:

(59) Syntax
DP → θ DP

Lexicon. Lexical items are associated with syntactic categories
as follows:

θ: [agent], [theme], . . .

Translations. Verbs get new translations, and we add thematic
roles. We will use the following abbreviations:

• e is a variable of type v

• f is a variable of type ⟨v, t⟩

• V is a variable of type ⟨⟨v, t⟩, t⟩

• bark and butter are constants of type ⟨v, t⟩

• agent and theme are constants of type ⟨v,e⟩

The following entries replace the previous ones:

Type ⟨v, t⟩:

1. bark↝λ f ∃e .bark(e)∧ f (e)

2. butter↝λ f ∃e .butter(e)∧ f (e)

Type ⟨v,e⟩:
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1. [agent]↝λxλV λ f .V (λe .agent(e) = x ∧ f (e))

2. [theme]↝λxλV λ f .V (λe .theme(e) = x ∧ f (e))

Type ⟨⟨⟨v, t⟩, t⟩,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩:

1. andVP ↝λV ′λV λ f .V ( f )∧V ′( f )

We have introduced the following type-shifter:

Type-Shifting Rule 7. Quantifier Closure
If α↝α′, where α′ is of type ⟨⟨v, t⟩, t⟩, then:

α↝α′(λe .true)

as well.

11.5 Conjunction in event semantics

In Chapter 10, we have seen that many uses of and can be sub-
sumed under a general schema, discussed by Partee & Rooth (1983)
among others. This schema is repeated here:

(60) and⟨τ,⟨τ,τ⟩⟩

↝{λqλp . p ∧q if τ = t

λXτλYτλZσ1 .⟪and⟫⟨σ2,⟨σ2,σ2⟩⟩(X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩

where ⟪and⟫⟨σ2,⟨σ2,σ2⟩⟩ denotes the translation of and for the cor-
responding type.

What does this rule amount to in the case of VP-modifying
and, as in John smoked and drank? On the first approach, VPs
are of type τ = ⟨v, t⟩. On the second approach, VPs are of type
τ = ⟨⟨v, t⟩, t⟩. Applying rule (60) in each case results in the follow-
ing:
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(61) a. andVP ↝λ f ′λ f λe . f (e)∧ f ′(e)
b. andVP ↝λV ′λV λ f .V ( f )∧V ′( f )

Exercise 2. Show how rule (60) leads to these two representations.

As you can see in (63) and (64), these two choices lead to very
different translations: (62a) and (62b) respectively.

(62) a. ∃e .smoke(e)∧drink(e)∧agent(e) = j
b. ∃e .smoke(e)∧agent(e) = j∧

∃e′ .drink(e′)∧agent(e′) = j

Now, (62a) cannot be the right representation of John smoked
and drank. If this sentence is true, for all we know he might have
smoked slowly and drunk quickly. In (62a) there is only one event
for two such contradictory adverbs to modify, and we would end
up with the same kind of problem we already encountered ear-
lier in connection with Jones buttered the toast slowly and buttered
the bagel quickly. Part of the point of introducing events was to
avoid having to attribute contradictory properties to the same en-
tity. The entry in (62a) sends us right back to square one. We fare
much better with (62b), because it provides us with the two events
we need to avoid the problem.

Exercise 3. Add slowly and quickly to the tree in (64) and show
how the resulting formula avoids the attribution of contradictory
properties to the same event.
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(63) S
t

∃e .smoke(e)∧drink(e)
∧agent(e) = j

⇑
⟨v, t⟩

λe.smoke(e)∧drink(e)
∧agent(e) = j

DP
⟨v, t⟩

λe .agent(e) = j

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
j

John

VP
⟨v, t⟩

λe .smoke(e)
∧drink(e)

VP
⟨v, t⟩

λe .smoke(e)

smoked

CoordP

Coord
⟨⟨v, t⟩,

⟨⟨v, t⟩,⟨v, t⟩⟩⟩
λ f ′λ f λe .

f (e)∧ f ′(e)

and

VP
⟨v, t⟩

λe .drink(e)

drank
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(64) S
t

∃e .smoke(e)∧
agent(e) = j∧
∃e′ .drink(e′)∧
agent(e′) = j

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .smoke(e)∧
agent(e) = j∧ f (e)∧
∃e′ .drink(e′)∧

agent(e′) = j∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = j∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩

λxλV λ f .V (λe .
agent(e) = x ∧ f (e))

[agent]

DP
e
j

John

VP
⟨⟨v, t⟩, t⟩

λ f ∃e .smoke(e)∧ f (e)∧
∃e′ .drink(e′)∧ f (e′)

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

smoke(e)
∧ f (e)

smoked

CoordP

Coord
⟨⟨⟨v, t⟩, t⟩,
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩
λV ′λV λ f .

V ( f )∧V ′( f )

and

VP
⟨⟨v, t⟩, t⟩
λ f ∃e′ .
drink(e′)
∧ f (e′)

drank

Does this mean that we cannot represent conjunction on the
first approach? No: all we have seen is that the Partee & Rooth
schema is not compatible with it. We can still formulate an en-
try for VP-level conjunction that is compatible with event predi-
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cates. This is similar to DP-level conjunction, where in Chapter
10 we have encountered both schema-based and non-schema-
based entries.

Exercise 4. Formulate an entry for VP-level conjunction that is
compatible with the event-predicate based approach. Hint: use
sums of events. Make sure it predicts the right truth conditions
for John smoked slowly and drank quickly. Assume that for any
theta role θ, θ(e⊕e′) = θ(e)⊕θ(e′).

11.6 Negation in event semantics

Quantifiers and coordination are scope-taking elements whose be-
havior with respect to events we need to think about. Negation is
another. Just like quantificational noun phrases, negation always
seems to take scope above the event quantifier. For example, (65),
read with neutral intonation, only has the reading in (66b), and
lacks the reading in (67b). That reading, if it was available, would
be almost trivially true, since any event that doesn’t happen to be
a barking by Spot will verify it.

(65) Spot didn’t bark.

(66) a. ¬[∃e .bark(e)∧agent(e) = s]
b. “There is no barking event that is done by Spot”

(67) a. ∃e .¬[bark(e)∧agent(e) = s]
b. “There is an event that is not a barking by Spot”

How do the two approaches to event semantics that we have
encountered fare? Let us start with the first approach, on which
verbs denote sets of events. On this approach, verbs and their pro-
jections denote sets of events. For example, the verb bark denotes
the set of all barking events. And so does the VP, on the assump-
tion that it only consists of this verb. Now VP negation needs to
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map this set to another set of events. What could that set be? If VP
negation is translated in terms of truth-functional negation (that
is, the kind of negation that we are familiar with from proposi-
tional logic and predicate logic), we might attempt this:

(68) not↝λ f λe .¬ f (e) (to be revised)

But this is a disastrous denotation. It says that not applies to a set
of events and maps it to its complement. For example, if it ap-
plies to the set denoted by bark, the result will be the complement
of the set of barking events. The subject then combines with this
set via a thematic role head, and the result asserts that there is an
event whose agent is Spot that is not a barking event. This deriva-
tion is shown in Figure (70). The result is the following reading:

(69) ∃e .agent(e) = s∧¬bark(e)
There is an event whose agent is Spot that is not a barking
event.

What we want is the reading expressed by (66b). But the entry
in (68) generates (69) instead, which expresses something much
weaker than what we want. Formula (69) is true just in case Spot
did anything at all instead of or in addition to barking. The prob-
lem runs deeper than the faulty translation in (68). It is concep-
tually not clear what set of events should be denoted by not bark,
nor what it would take for an event to be a member of this set.
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(70) S
t

∃e .agent(e) = s∧¬bark(e)
⇑

⟨v, t⟩
λe.agent(e) = s∧¬bark(e)

DP
⟨v, t⟩

λe .agent(e) = s

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
s

Spot

VP
⟨v, t⟩

λe .¬bark(e)

Aux
⟨⟨v, t⟩,⟨v, t⟩⟩

λ f . f

did

NegP
⟨v, t⟩

λe .¬bark(e)

Neg
⟨⟨v, t⟩,⟨v, t⟩⟩
λ f λe .¬ f (e)

not

VP
⟨v, t⟩

λe .bark(e)

bark

One can respond to this situation in different ways. One way is
to expand our inventory of events to include “negative events”.
In some cases, it is intuitively clear what a negative event should
be: for example, a negative staying event is a leaving event and
vice versa. While it is not so clear what a negative barking event
is, some semanticists have tried to clarify their status (Bernard &
Champollion, 2018). Another way is to include the subject into
the VP (see the discussion of the VP-internal subject hypothesis in
Chapter 7), so that not applies to Spot did bark rather than to bark
and returns a truth value rather than a set of events. (Similarly,
not could take a VP and a subject and combine them to return a
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truth value.) But this will not extend easily to sentences in which
event modifiers like in the garden take scope over the subject, as
in In the garden, Spot didn’t bark, because such event modifiers
expect to be given sets of events. The tree for this sentence would
look like (70) except that the lower half of the S node would com-
bine via Predicate Modification with a PP node with type ⟨⟨v, t⟩, t⟩
and denotation λe.location(e) = ιx.Garden(x) and then the result
(after existential closure applies) would be the following:

(71) ∃e . location(e) = ιx .Garden(x)∧agent(e) = s∧¬bark(e)

We will not implement any of these options in detail and instead
adopt the second approach to event semantics presented in this
chapter, on which verbs and their projections denote sets of sets
of events. On this approach, not bark can be given a straight-
forward denotation: the set of sets that do not contain any bark-
ing events. The resulting truth conditions are the desired ones in
(66b). This is shown in Figure (72).
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(72) S
t

¬∃e .bark(e)∧
agent(e) = s

⇑
⟨⟨v, t⟩, t⟩

λ f ¬∃e .bark(e)∧
agent(e) = s∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = s∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
s

Spot

VP
⟨⟨v, t⟩, t⟩
λ f ¬∃e .

bark(e)∧ f (e)

Aux
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩

λV λ f .V ( f )

did

VP
⟨⟨v, t⟩, t⟩
λ f ¬∃e .

bark(e)∧ f (e)

Neg
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩

λV λ f .¬V ( f )

not

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

bark(e)∧ f (e)

bark

Draft January 18, 2024



12 ∣ Tense and aspect

12.1 Introduction

12.1.1 Temporalism vs. eternalism

Some sentences appear to change in truth value over time. For
example, of the following sentence it might be said that it is true
at one time, and then false later, after the queen has recovered:

(1) The queen is ill.

Does the status of a sentence as true or false vary over time? In
philosophy, that stance is known as TEMPORALISM, and it is an
idea that Arthur Prior formalized with his TENSE LOGIC. In Prio-
rian tense logic, a sentence may be true relative to one time but
false relative to another. The logic includes operators like ‘Future’
and ‘Past’ that can shift the time of evaluation. For example, ‘Fu-
tureφ’ is true at time t if there is a time t ′ after t such thatφ is true
at t .

The view on which the truth status of sentences does not change
over time is called ETERNALISM. An eternalist could account for
the apparent change in truth value from one moment to another
by saying that the present tense in (1) is a deictic element, so the
sentence cannot even be evaluated as true or false until the con-
text of utterance fills in a value for it. Just like with other sentences
containing indexicals, such as I am here now, the proposition ex-
pressed by the sentence depends on information about the con-
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text of utterance. That proposition is a claim about a particular
time, such as 2pm on Thursday, August 10th, 2024. If the queen
is ill at that time, then even if the queen recovers by August 11, it
will still be true true on August 11 that the queen was ill at 2pm
on August 10th, and that time-specific claim will remain true for
eternity.

Kaplan’s distinction between CONTENT and CHARACTER is help-
ful in articulating the sense in which the truth of the proposition
expressed in (1) can coherently be thought of as stable across time.

• CONTENT is the proposition expressed by an utterance, with
the referents of all of the indexicals resolved.

• CHARACTER is the aspect of meaning that two utterances of
the same sentence share across different contexts of utter-
ance.

For illustration, consider the following two utterances:

(2) a. (May 11, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

b. (May 12, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

Do these two sentences have the same meaning or different mean-
ing? Reasonable people might disagree. How about the following
pair:

(3) a. (May 11, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

b. (May 12, 2010, uttered by Elizabeth Coppock:)
I turned 30 yesterday.

Again, reasonable people might disagree. In some sense, the ex-
amples in (2) have the same meaning, but in another sense, those
in (3) have the same meaning. The pair of sentences in (2) have
the same character, while the pair in (3) have the same content.
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The character of a sentence can be modeled as a function from
contexts to contents that fills in values for all of the indexicals; the
content is then a claim that is free of context-sensitivity.

In Kaplan’s terms, the content of an utterance of (1), in any
given context, is a claim about a particular time (the time of ut-
terance in that context). The truth value of that claim does not
change over time. If the present tense is a deictic element, then
eternalism is a coherent stance to take, at the level of content.

12.1.2 Some desiderata for a theory of tense

12.1.2.1 The deictic nature of tense

There are several reasons to reject the view of tense that is en-
coded in Prior’s tense logic. Unlike in Prior’s tense logic, natural
languages do not seem to have operators that shift the time of
evaluation, like Prior’s ‘Past’ and ‘Future’ operators. The closest
analogue to Prior’s ‘Past’ operator in English would be something
like It was the case that, but this construction does not succeed in
shifting the temporal interpretation of the sentences it embeds.
Consider the following example (Kamp & Reyle, 1993, p. 496).

(4) It was the case that Mary is ill.

This sentence is odd, and is not synonymous with Mary was ill.
The present tense in Mary is ill remains anchored to the time of
utterance, rather than being shifted backwards in time by It was
the case that.

A different example reinforcing the same point is the follow-
ing.

(5) Fred told me that Mary is pregnant.

This sentence is not odd, but it can only be used to describe a
scenario in which Fred made a claim about Mary being pregnant
at the time of utterance. It cannot be used to describe a telling
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event that occurred several years prior to the time of utterance,
unlike (6), which can:

(6) Fred told me that Mary was pregnant.

Both (4) and (5) show a tendency for the present tense to be an-
chored to the time of utterance.

The interpretation of future tense is similarly impervious to
embedding:

(7) It was predicted that the Messiah will come.

This sentence cannot be used to describe a time t in the past such
that at time t , there was a prediction that the Messiah would come
at some time t ′ in the future of t . (A scenario like that could be
described by a variation on (7) with would in place of will.) Rather,
the future tense remains anchored to the time of utterance, so that
the sentence characterizes a prediction made in the past about a
time following the ‘now’ of the utterance.

12.1.2.2 The anaphoric nature of tense

In addition to being deictic, tenses also appear to bear certain
similarities to pronouns, being anaphoric to times that are salient
in the discourse. For instance, the second sentence of (8) describes
an event that directly follows the event described in the first sen-
tence (Kamp & Reyle, 1993, ex. (5.21), p. 495).

(8) Bill left the house at a quarter past five. He took a taxi to the
station and caught the first train to Bognor.

In Prior’s tense logic, there is an operator ‘Past’ whose semantics
is defined such that ‘Past φ’ is true at time t if there is some time t ′

prior to t such that φ is true at t ′. This amounts to an existential
theory of the past tense. Example (8) shows that the past tense
contributes more than an existential claim about a time prior to
the time of utterance; it contributes a claim about a particular
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contextually salient time.
Another piece of evidence suggesting that the past tense can

behave like an anaphor is the following famous example due to
Partee (1973). Consider a scenario in which you’ve just baked some
cookies, and are on the way over to your friend’s house. You realize
mid-journey that you left the oven on. Then you say:

(9) Oh no! I didn’t turn off the stove!

An existential theory of the past tense like Prior’s does not make
correct predictions about this case. We could consider two possi-
ble scopes for negation relative to the past tense:

• Negation scopes over existential past tense (NOT > PAST):
It is not the case that there is a time in the past when I turned
off the stove.

• Existential past tense scopes over negation (PAST > NOT):
There is a time in the past when I didn’t turn off the stove.

Neither one of these is right. The first one is too strong – surely
there is some time in the past when you turned off the stove. The
second one is too weak – of course there is a time in the past when
you didn’t turn off the stove! For example, consider the moment
you put the cookies in the oven; you didn’t turn off the stove then.
It seems that (9) is saying something about a particular time.

Partee (1973) notes a number of additional structural parallels
between tenses and pronouns, in support of the so-called REFER-
ENTIAL THEORY OF TENSE. On this view, the past tense in a sen-
tence like (9) is similar to a free pronoun, anaphorically referring
back to a time that has previously been introduced into the dis-
course.

Observations like Partee’s suggest that tenses should be inter-
preted as variables over times, just as pronouns are interpreted as
variables over individuals. And just as with pronouns, these vari-
ables can in principle be either free or bound. For example, as
discussed by Heim (1994), Abusch (1988) treats the following case
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using existential quantification over the variable associated with
past tense:

(10) John was in Paris at some time.

Klein (1994) mentions the following example, illustrating some-
thing more like (restricted) universal quantification over the vari-
able associated with the past tense:

(11) Whenever I visited Carla, she was lying in bed.

One might even go so far as to posit that the variable in question
is in fact always bound by a quantifier. It is commonly assumed
that the domain of quantifiers is restricted by a contextually sup-
plied argument, often thought of as similar to a pronoun (von Fin-
tel, 1994). This kind of contextual domain restriction can make a
quantificational analysis of tenses viable. On such an analysis, (9)
is literally false with respect to the entire domain, but true with
respect to a narrower domain which only includes contextually
relevant times. In this chapter, we will assume that the past tense
is interpreted as a variable over times that may be either free or
bound.

12.1.2.3 Viewpoint aspect

Another desideratum for a theory of tense that a Prior-style theory
fails to meet has to do with the interaction between tense and as-
pect, viewpoint aspect in particular (also known as ‘grammatical
aspect’).1 Viewpoint aspect can be thought of as locating events
with respect to a point of view, and it interacts with tense to situate
an eventuality in time.

1Here we are not primarily concerned with the various aspectual classes most
famously laid out by Vendler (1957) (state, activity, accomplishment, achieve-
ment, and other distinctions of this kind). Those types of distinctions fall under
the heading of AKTIONSART (type of event), also known as ‘situation aspect’, ‘lex-
ical aspect’, or ‘inner aspect’.
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One broad distinction in the realm of viewpoint aspect is be-
tween PERFECTIVE and IMPERFECTIVE aspect. Perfective aspect
“looks at the situation from outside, without necessarily distin-
guishing any of the internal structure of the situation, whereas the
imperfective aspect looks at the situation from inside, and as such
is crucially concerned with the internal structure of the situation”
(Comrie, 1976, 4). This distinction is grammatically marked in a
number of languages, including Romance and Slavic languages,
illustrated in the following examples from Spanish and Russian,
respectively.

(12) a. Juan
Juan

leyó
read.PAST.PERFECTIVE.3SG

el
the

libro.
book

‘John read the book.’
b. Juan

Juan
leía
read.PAST.IMPERFECTIVE.3SG

el
the

libro.
book

‘John was reading the book.’ / ‘John used to read the
book.’

(13) a. Ivan
Ivan

sjel
eat.PAST.PERFECTIVE.MASC

sup
soup

‘Ivan ate up (all) the soup.’
b. Ivan

Ivan
jel
eat.PAST.IMPERFECTIVE.MASC

sup
soup

‘Ivan was eating the/some soup.’ / ‘Ivan used to eat
the/some soup.’

As the translations of the imperfective examples (12b) and (13b)
show, the past progressive (was V-ing) only captures one of the
meanings that the past imperfective can have in French and Rus-
sian. Another kind of interpretation that imperfective aspect has
in those languages is a habitual one, expressed more effectively
by used to than by the progressive in English. Furthermore, in
English, progressive forms are used to indicate imperfectivity in
combination with dynamic (non-stative) predicates, but unlike
imperfective in languages like French and Russian, the progres-
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PERFECTIVE IMPERFECTIVE

PERFECT I have danced I have been dancing
NON-PERFECT I danced I was dancing

Table 12.1: Aspectual distinctions in English

sive is not regularly used with stative verbs, as mentioned above
in the discussion of aktionsart. So we follow Comrie (1976, 25)
in treating ‘progressive’ as a distinct sub-category of imperfective
aspect.

English has two morphological forms that have been thought
to express viewpoint aspect: the progressive, as in I am eating
the perfect, as in I have eaten. Due to an unfortunate accident
in the development of standard terminology in this domain, the
term ‘perfective’ is not an adjectival form of ‘perfect’. In fact, these
categories can cross-classify; see Table 12.1. It is controversial
whether the perfect counts as a form of viewpoint aspect; Bhatt &
Pancheva (2005) argue that it is not, contrary to the more common
view. In any case, it is a grammatical category that can combine
with other tense/aspect forms to indicate temporal relations, and
plays an important role in the theory of tense. We turn to it next.

The perfect. The perfect can be found in multiple tenses, in-
cluding present and past:

(14) a. I have seen it. (present perfect)
b. I had seen it. (past perfect)

In English, the perfect is realized as a combination of the verb
have (in any form) and a verb phrase headed by an -en form (e.g.
seen), known as the ‘perfect participle’. (In many cases, the perfect
participle is identical in form to the past participle, as in I have
mailed the letter.) Compare (14a) and (14b) to the corresponding
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simple past sentence:

(15) I saw it. (simple past)

All three of these sentences describe an event of seeing something
that precedes the time of utterance, but they all differ in meaning.

Reichenbach (1947) argued that in order to give a good theory
of the English perfect, it is necessary to consider not only the time
of utterance and the time at which the event occurred, but also
a more abstract time that he referred to as REFERENCE TIME (also
called TOPIC TIME).

• SPEECH TIME (S): the time the sentence is uttered

• EVENT TIME (E ): the time the event takes place

• REFERENCE TIME (R): the time under discussion

The concept of ‘reference time’ was Reichenbach’s major innova-
tion, and the concept that is least intuitively obvious. One way of
characterizing it is that it is the time that the sentence is ‘about’
(hence the alternative term ‘topic time’).

According to Reichenbach, the difference between a past per-
fect sentence like (14b) and a simple past sentence like (15) is
that in the former case, with the perfect, the sentence is about a
time prior to speech time before which the seeing took place (so
E <R < S):

E R S

In the case of the simple past, as in (15), the sentence is about the
time at which the seeing took place (so E = R < S), a time prior to
speech time.

E ,R S
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Aside from its intuitive appeal, support for this analysis comes
from the fact that temporal adverbs like at 5pm track the hypoth-
esized reference time:

(16) a. At 5pm, I mailed the letter. (5pm = mailing time)
b. At 5pm, I had mailed the letter. (mailing time < 5pm)

Assuming the modifier is identified with the reference time, we
correctly predict that 5pm is the time of mailing the letter for the
sentence in simple past, but a time before the speech time and
after the time of mailing the letter in the past perfect.

In the past tense, then, the perfect splits apart the reference
time and the event time, and locates the event time prior to the
reference time. It has the same effect in the present tense as well.
Consider (14a), I have seen it. Assuming that in the present tense,
the reference time is the time of utterance and that the perfect
locates the event time prior to reference time yields the following
diagram for the present perfect:

E R,S

This analysis correctly locates the time of seeing prior to the time
of utterance. Unlike in the simple past and the past perfect, how-
ever, the reference time is identified with the time of utterance. If
so, then a temporal modifier like now should be combinable with
the present perfect, since temporal modifiers pick out the refer-
ence time. This prediction is borne out:

(17) Now I have mailed the letter.

Compare:

(18) a. ??Now I had mailed the letter.
b. ??Now I mailed the letter.

We can explain the degraded nature of (18a) and (18b) as follows:
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Both are past tense sentences, requiring the reference time to be
prior to the time of utterance. Use of now as a sentence-initial
temporal modifier imposes the requirement that the reference time
be identified with the time of utterance. These two requirements
conflict with each other.

This analysis of the perfect makes good predictions about the
future tense as well. Assuming that the future tense locates the
reference time after speech time, and that the perfect locates the
event time prior to the reference time, a sentence like:

(19) At 5pm, I will have mailed the letter.

is predicted to imply that 5pm is in the future, and that mailing the
letter will have occurred prior to that (perhaps before, or perhaps
after speech time). This accords with intuition. In contrast:

(20) At 5pm, I will mail the letter.

implies that the letter-mailing is in the future.

Exercise 1. With the tools just developed, explain the following
contrast, discussed by Reichenbach.

(21) How unfortunate!

a. Now that John tells me this I have mailed the letter.
b. #Now that John tells me this I mailed the letter.

The picture we arrive at, then, is that the contribution of tense
is to relate the reference time with the speech time, and the con-
tribution of the perfect is to relate the event time to the reference
time. Past tense locates the reference time prior to speech time;
present tense sets them equal; and future locates reference time
after speech time. The perfect places the event prior to reference
time; otherwise the event takes place at reference time. There
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are a number of facts about the English perfect that the Reichen-
bachian analysis fails to account for (see Bhatt & Pancheva 2005
for an excellent overview and discussion), but let us stop here for
the moment and move on to another grammatical device for the
encoding of temporal relations in English, the progressive.

The progressive Consider the following contrast:

(22) a. At 5pm, I mailed the letter. (simple past)
b. At 5pm, I was mailing the letter. (past progressive)

In the first case, there was a letter-mailing event that took place
at 5pm. In the second case, there was a letter-mailing event in
progress at 5pm which may not have completed by that time. Ben-
nett & Partee (1972) propose to model this contrast using inclu-
sion among time intervals. In the past progressive example (22b),
the time interval during which the dancing event took place in-
cludes the reference time identified with 5pm. This gives us the
following picture for past progressive:

R

E

S

Following Comrie (1976), we take the unmarked, non-progressive
variant to have PERFECTIVE ASPECT in English. Comrie considers
the English progressive to be a subtype of IMPERFECTIVE ASPECT,
a category of grammatical forms associated with a lack of com-
pletion, a continuous state, an iterated sequence of events, or a
habitual pattern.

Perfective aspect is often analyzed as the reverse of what Ben-
nett & Partee (1972) propose for the progressive: the reference
time contains the event time. This notion of ‘containedness’ en-
tails a view of times on which they are actually stretches of time,
or time INTERVALS. A time t contains another time t ′ if every mo-
ment included within t ′ is also included in t . Using ⊆ to represent
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this containment relationship, we can represent the contribution
of aspectual morphology as follows:

• perfective aspect: E ⊆R

• progressive aspect: R ⊆ E

This view captures the contrast in (22b); the non-progressive sen-
tence implies that a letter-mailing event occurred at 5pm, while
the progressive sentence does not.

There are a number of challenges for this view, which we will
not attempt to address. Observe, for example, that progressive
and non-progressive past tense sentences differ in their entail-
ment patterns. A past tense sentence implies that the event was
completed, while a progressive sentence does not.

(23) a. I walked to the park⇒ I got to the park.
b. I was walking to the park /⇒ I got to the park.

The R ⊆ E analysis of progressive does not require completion of
the event in the past, so it correctly predicts that I was walking to
the park does not entail I got to the park, but it still implies that
there is an event of me walking to the park; that at some point the
event will become complete. So, as Parsons (1990b) and Dowty
(1979) point out, this analysis predicts that the following argu-
ment should be valid:

(24) Mary was building a house. Therefore, Mary will have built
a house.

Another fact to account for is that progressives behave like atelic
predicates:

(25) a. I walked to the park in/*for an hour.
b. I was walking to the park for/*in an hour.

There are many more interesting observations to consider, and
many approaches to the analysis of the progressive; see Bhatt &
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Pancheva (2005), lecture 4 for an overview. For simplicity, we will
stick with the Bennett and Partee analysis, acknowledging that
there is much more to the story.

12.2 A formal theory of tense

12.2.1 A partial, context-sensitive logic with times

12.2.1.1 Syntax

We define a representation language LT , a logic with time-denoting
expressions with context-sensitivity and presuppositions. We use
i as the type designator for times, so expressions that refer to times
will be of type i . The language contains an infinite set of variables
of type i , all of the form tn , where n is an integer. We use t ′ as an
abbreviation for t1, etc.

LT contains the symbols < and ⊆, standing for temporal prece-
dence and temporal inclusion:

(26) Syntactic rule (<)
Ifα andβ are expressions of type i , thenα <β is a formula.

(27) Syntactic rule (⊆)
Ifα andβ are expressions of type i , thenα ⊆β is a formula.

The expression t ⊆ t ′ can be read, ‘t is contained in t ′’. Thus t ′ is
the (potentially) larger interval, occupying a stretch of time that
contains the stretch of time t occupies. (We’ll get to the semantic
definition in Section 12.2.1.2.)

LT includes predicates expressing relations between individ-
uals and times. For instance, the following is a formula of type t
which says that x is ill at time t :

(28) ill(x)(t)

(Of course, being ill is a gradient and multidimensional matter, as
for example Sassoon (2013) discusses, but we gloss over that sub-
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tlety here.) As a notational convention, we will place the temporal
argument to a predicate in a subscript, like so:

(29) illt(x)

LT contains a number of special indexical constants, whose
interpretation is relative to a given context of utterance. These in-
clude now, denoting the time of utterance, i, denoting the speaker
of the context, and u, denoting the addressee of the context. now
is an expression of type i , so the following formula is well-formed:

(30) illnow(q)

This formula expresses that, at the time of utterance, there is a
state of being ill held by the queen.

When we say “a state of the queen being ill”, we mean a state
that meets a certain description. As Klein (1994) reminds us, there
may be many different particular states that meet the description
at the relevant time, and it is important to draw a clear distinc-
tion between the state itself and a description thereof. The sen-
tence does not require that any particular eventuality obtains at
the time of utterance, only that there is one that matches the de-
scription. We will use:

(31) illt(q)

to express the existential claim that there was a state of the queen
being ill whose full temporal extent was t . We are not explicitly
appealing to eventualities in this chapter, but if we were, we would
write (31) as:

(32) ∃e . ill(e)∧holder(e,q)∧τ(e) = t

Here, τ(e) can be read as ‘the temporal trace of e’, that is, the time
interval corresponding to e’s spatial extent. Although we will not
make our variables over eventualities explicit in this chapter, we
may still think of the semantics of predicates like ill in terms of
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them.
Otherwise, the syntax of LT is just the same as L∂, with the

same connectives and variable binders, including not only the fa-
miliar devices of lambda abstraction and quantification but also
the iota operator.

12.2.1.2 Semantics

The notion of ‘speech time’ is an INDEXICAL one: It has to do with
the so-called CONTEXT OF UTTERANCE, or CONTEXT OF USE. The
‘context of utterance’ is the here and now of the utterance: who
is speaking, to whom, where, when, etc. To model tense we will
use an extension of Kaplan’s system as described in Chapter 7,
where the semantic value of an expression is determined relative
to a model M , an assignment function g , a world w , and a context
of utterance c.

JαKM ,g ,c

The ‘utterance time’ is the time determined by c, which we call
t(c).

The semantic value of an expression is defined relative to a
TEMPORAL MODEL M , which specifies a set T of time intervals along
with a set of individuals D . LetT be the set of types (e for individu-
als, t for truth values, i for times, ⟨e, t⟩ for functions from individ-
uals to truth values, etc.). As usual, for each type τ ∈ T , the model
determines a corresponding domain Dτ. We define the standard
frame based on D and T as an indexed family of sets (Dτ)τ∈T ,
where:

• De =D

• Di = T

• D t = {T,F}

• for any types σ and τ, D⟨σ,τ⟩ is the set of functions from Dσ

to Dτ
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As in L∂ from Chapter 8, models are associated with an AUG-
MENTED FRAME along with the standard frame. As in that chapter,
we distinguish here between CLASSICAL DOMAINS Dτ and FIXED-
UP DOMAINS D+

τ , for any type τ. The fixed-up domains include
the undefined entities. For atomic types, the fixed-up domains
are defined as the union of the classical domains with the unde-
fined entity of the corresponding type:

• D+
t = (D t ∪{mt}).

• D+
e = (D t ∪{me}).

• D+
i = (Di ∪{mi}).

As before, for complex types D+
⟨σ,τ⟩, we define D+

⟨σ,τ⟩ as the set of

functions from D+
σ to D+

τ , and we define the undefined entity of
any complex type ⟨σ,τ⟩ as a function whose output is always mτ,
the undefined entity of type τ.

A temporal model M for LT based on a set of individuals D
and a set of times T is a tuple:

M = ⟨(Dτ)τ,(Dτ)+τ , I ,<,⊆,C⟩

where

• (Dτ)τ is standard frame based on D and T

• (Dτ)+τ is an augmented frame based on D and T

• for every type τ ∈ T , I assigns to every non-logical constant
of type τ an object from the domain D+

τ

• < is a precedence relation among elements of T , which is a
linear order – transitive, irreflexive, and total (so for every
pair of times t1 and t2, either t1 < t2 or t2 < t1)

• ⊆ is a containment relation among elements of T
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• C is a set of contexts c such that t(c) ∈ T , sp(c) ∈ D , and
ad(c) ∈D .

The idea that time is linearly ordered may seem obvious, but
there are alternatives. On BRANCHING TIME model, there can be
multiple timelines that branch out from a given point, although
there is a unique sequence of moments preceding a given time
point (see for example Goranko & Rumberg 2023). On this view,
it is possible to have a pair of times t1 and t2 that are not ordered
via the precedence relation; in other words, neither t1 < t2 nor t2 <
t1 holds. von Prince (2019) argues that a branching time model
is ideal for capturing the relationship between counterfactuality
and past tense marking.2 For now, we will stick to the simple view
that there is only one timeline.

Semantics for the connectives and variable binders inherited
from L∂ are just as in L∂. The semantics for the precedence and
inclusion symbols of LT are defined in terms of the precedence
and inclusion relations given by the model:

(33) Jα <βKM ,g ,c ={ T if JαKM ,g ,c < JβKM ,g ,c

F otherwise

(34) Jα ⊆βKM ,g ,c ={ T if JαKM ,g ,c ⊆ JβKM ,g ,c

F otherwise

The special indexical constant now is interpreted relative to a
given context of utterance c:

(35) JnowKM ,g ,c = t(c)
2As Dowty (1977) discusses, this type of model also offers a simple account

imperfective paradox; if the progressive signals that the verbal description holds
at a time interval containing the reference time, and the time interval need not
be contained in the unique timeline leading up to the moment of speech, then
a progressive sentence does not entail that the verbal description was realized.
But Dowty (1977) also argues that even under such an account, it is impossible
to escape the need for a total ordering among moments. Without it, there would
be no way to make sense of counterfactual statements such as If I were in New
York right now, I would do such-and-such (see pp. 62–66).
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Hence illnow(x) is true relative to model M , assignment function
g , and context of utterance c if and only if, according to the inter-
pretation function I determined by model M , the ill relation holds
between t(c) and g(x):

(36) Jillnow(x)KM ,g ,c =T iff I(ill)(t(c))(g(x))

12.2.2 English tense and aspect

We now sketch a theory of tense and aspect in English, moving
from the innermost layer of the syntactic structure out to the tense
layer. As a first step, let us establish our assumptions about the
syntactic structure of tense and aspect.

12.2.2.1 The syntax of tense and aspect in English

Kratzer (1998) proposes that the syntax of verb phrases is layered
so that an aspectual phrase AspP dominates the VP, and a tense
phrase TP in turn dominates the aspectual phrase:

(37) TenseP

Tense AspP

Asp ...

If perfect is considered a form of viewpoint aspect, then this struc-
ture captures the fact that a tense form can combine with either
perfect and progressive. However, it does not take into account
the fact that the perfect and the progressive can be combined:

(38) a. I have been reading it.
b. I had been reading it.
c. I will have been reading it.

We will therefore assume that there is a syntactic layer for the per-
fect above the aspectual layer where the perfective/imperfective
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distinction is encoded (McCoard, 1979; Dowty, 1979; Iatridou et al.,
2001; Bhatt & Pancheva, 2005).

(39) TenseP

Tense PerfP

Perf AspP

Asp ...

Thus (38a) has the structure:

(40) TenseP

Tense

PRES

PerfP

Perf

PFV

AspP

Asp

IMP

I read it

That said, we assume that the PerfP projection is optional, so a
non-perfect sentence like:

(41) I am reading it.

has the structure:

(42) TenseP

Tense

PRES

AspP

Asp

IMP

I read it
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Our task now is to provide translations into LT for elements that
can head tense/aspect projections that allow for them to combine
compositionally, and make correct predictions about the inter-
pretations that arise when they do.

12.2.2.2 Non-finite clauses

In the fragment of English that we treat in this chapter, verbal
predicates take time arguments along with arguments for the par-
ticipants in the eventuality they describe. For example:

(43) dance↝ λx .λt .dancet(x)
(44) read↝ λyλx .λt .readt(x, y)

This expression denotes a function from individuals to functions
from times to truth values. We assume that the individual partici-
pant arguments combine with the verb prior to any tense/aspect
information at the vP level. Assuming that Ann ↝ a, Ann read iti

will be interpreted as:

(45) λt .readt(a, xi)

12.2.2.3 Viewpoint aspect

Recall the contrasting pair of examples (22), repeated here:

(46) a. At 5pm, I mailed the letter. (simple past)
b. At 5pm, I was mailing the letter. (past progressive)

Let us assume, following Bennett & Partee (1972), that the English
progressive form signals that the event time includes the refer-
ence time.

Syntactically, we analyze (46b) as follows:

(47) At 5pm [TP PAST [AspP PROG [vP I mail the letter ] ] ]

The vP that an Asp head combines with provides a predicate of
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times. Times that fall under this predicate can be thought of as
‘event times’ because they are times at which an event of the kind
described by the non-finite part of the sentence takes place. The
Asp node takes this ‘event time predicate’, as we might call it, and
produces a new predicate of times, ones which can play the role
of reference time.

(48) PROG↝ λP⟨i ,t⟩ .λt .∃t ′ . t ⊆ t ′∧P(t ′)
‘Takes a predicate of times P , and returns a predicate of
times that is true of a time t if t is contained in a time t ′ at
which P is true.’

We also treat perfective aspect in terms of inclusion, but in the
other direction:

(49) PFV↝ λP⟨i ,t⟩ .λt .∃t ′ . t ′ ⊆ t ∧P(t ′)
‘Takes a predicate of times P , and returns a predicate of
times that is true of a time t if t contains a time t ′ at which
P is true.’

Using the assumptions made so far (and assuming that the
English word I is translated as the indexical constant i, and adopt-
ing a Fregean analysis of the definite article), we obtain the fol-
lowing translation into LT at the AspP node of (46b):

(50) [AspP PROG [vP I mail the letter ] ]
λt .∃t ′[t ⊆ t ′∧mailt ′(i, ιx . letter(x))]

This is a predicate of times that holds of a time t if there is a time
t ′ containing t at which the speaker mails the letter.

We assume that non-progressive sentences are interpreted as
perfective. Hence the AspP node of (46a) would be translated as
follows:

(51) [AspP PFV [vP I mail the letter ] ]
λt .∃t ′[t ′ ⊆ t ∧mailt ′(i, ιx . letter(x))]
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This is a predicate of times that holds of a time t if there is a time
t ′ that t contains at which the speaker mails the letter.

12.2.2.4 Tense

Let us now outline a simple theory of tense.

Past tense. Following Partee and others, we assume that the past
tense contributes a free variable over times. We assume that the
natural language morpheme PAST is associated with an index n,
just like a pronoun. This index determines the variable over times
that the past tense morpheme maps to. The simplest possible
analysis implementing this idea would be the following:

(52) PASTn ↝ tn (first version)

Then I mailed the letter would be analyzed as follows (where 3 is
an arbitrary index):

(53) [TP PAST3 [AspP PFV [vP I mail the letter ] ] ]
∃t ′[t ′ ⊆ t3∧mailt ′(i, ιx . letter(x))]

The formula we derive expresses the claim there is a time t ′ con-
tained within the discourse-salient time t3 at which the speaker
mails the letter.

One small deficiency of the analysis in (52), of course, is that it
says nothing about how the time relates to the time of utterance.
Nothing constrains t3, for example, to be in the past. Following
Heim (1994), we implement this constraint as a presupposition,
just like gender features on pronouns. (If the constraint were an
entailment, then it should be possible to target the constraint with
negation, and I didn’t turn off the stove could be true in virtue of
there being a non-past time at which the speaker turns off the
stove.)

Another question that arises under the simple treatment we
started with in (52) is how modifiers like at 5pm get integrated
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TenseP
λt .[t = t1∧∂(t1 < now)∧∃t ′[t ′ ⊆ t1∧mailt ′(i, l)]]

Tense
λP⟨i ,t⟩λt .[t = t1∧∂(t1 < now)∧P(tn)]

PAST1

AspP
λt .∃t ′ . t ′ ⊆ t ∧mailt ′(i, l)

Asp
λP⟨i ,t⟩ .λt .∃t ′ . t ′ ⊆ t ∧P(t ′)

PFV

vP
λt .mailt (i, l)

I mail the letter

Figure 12.1: Derivation for I mailed the letter.

compositionally into the sentence. These modifiers determine
the identity of the reference time. To handle this sort of phenomenon,
we assume that tenses contribute an argument slot that can be
saturated by a time-denoting expression. Our final lexical entry
for the past tense morpheme is as follows.

(54) PASTn ↝λP⟨i ,t⟩λt .[t = tn ∧∂(tn < now)∧P(tn)] (final)

Thus for an example like I mailed the letter, we have the deriva-
tion in Figure 12.1. At the top node, t1 is a free variable over times
that is presupposed to precede the moment of speech. The dis-
course context should provide an assignment function that will
give a value to this free variable. As long as the value is one that
precedes the time of utterance, the sentence will have a defined
truth value. In other words, the expression will have a defined
value relative to assignment function g and context of utterance c
as long as g(t1) precedes the time of utterance t(c).

Exercise 2. Write out how you would read the expression at the
top of Figure 12.1 aloud.
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Let us assume that a modifier like at 5pm denotes a partic-
ular time interval, and let us use 5pm as a constant of type i ot
represent it. (In fact, there are many times called 5pm, and there
is some pragmatic work to be done in identifying the one in ques-
tion, but we will gloss over that subtlety in the present discussion.)
Then I mailed the letter at 5pm can be translated with the follow-
ing formula:

(55) at 5pm [TP PAST3 [AspP PFV [vP I mail the letter ] ] ]
[5pm = t1∧∂(t1 < now)∧∃t ′[t ′ ⊆ t1∧mailt ′(i, l)]]

In this formula, the variable t1 is still free, but it is identified with
5pm, so there is only one value that an assignment function can
give it that will cause the formula to be true.

In the case that there is no temporal modifier, let us assume
that the variable t is existentially bound. To implement this, let us
assume that a silent existential quantifier may appear at LF. We’ll
notate it as ∃, mnemonically. With this silent existential quantifier
at LF, I mailed the letter receives the translation:

(56) ∃ [TP PAST3 [AspP PFV [vP I mail the letter ] ] ]
∃t[t = t1∧∂(t1 < now)∧∃t ′[t ′ ⊆ t1∧mailt ′(i, l)]]

Although t is existentially bound here, it is identified with a free
variable, so our treatment is still a referential theory of tense, rather
than an existential one.

Exercise 3. Explain how the treatment of tense and aspect that we
have built up so far captures the ‘completion inference’ of the past
perfective, i.e., the fact that I mailed the letter implies that there is
a letter-mailing event carried out by the speaker that has reached
completion.
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Exercise 4. Compute a tree for I was mailing the letter at 5pm.
Does the formula you derive carry a completion inference? Ex-
plain why or why not.

Present tense. A simple analysis of the present tense would be
as follows:

(57) PRES↝ now

Then I am mailing the letter would have the following translation:

(58) [TP PRES [AspP PROG [vP I mail the letter ] ] ]
∃t ′[now ⊆ t ′∧mailt ′(i, l)]

This formula asserts that there is a time t ′ including the time of ut-
terance at which a letter-mailing event is taking place. The event
need not be complete by the time of utterance; the event is merely
in progress at the time of utterance.

This treatment does not straightforwardly allow for overt tem-
poral modifiers, as in Now I am mailing the letter. Granted, the
distribution of present tense with temporal modifiers is somewhat
limited; the following sentence is slightly odd:

(59) ?At 5pm, I am mailing the letter.

The problem seems to be that the use of at 5pm as a temporal
modifier carries a pragmatic inference of some kind that 5pm is
distinct from the time of utterance. But in principle, there is no
ban on the use of temporal modifiers with the present tense. In-
deed, one of the important facts that we aim to capture in this
chapter is the contrast between (17) on the one hand and (18a)
and (18b) on the other. We repeat the examples here:

(60) Now I have mailed the letter.
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(61) a. ??Now I had mailed the letter.
b. ??Now I mailed the letter.

Once we develop an analysis of the English perfect (see section
12.2.2.5, we will be able to explain this contrast. For now, let us
modify our lexical entry for the present tense to allow for direct
semantic composition with temporal modifiers:

(62) PRES↝λP⟨i ,t⟩λt .[t = now∧P(t)]

In order to get an expression of type t at the top node of a tree
for a present tense sentence, a silent existential quantifier can be
inserted. In that case, our analysis of the present tense boils down
to the simple analysis we started with, using the lexical entry in
(57). Hence, when there are no modifiers, it suffices to use that
simple analysis.

Exercise 5. Give a derivation tree for I am mailing the letter. Use
a null existential quantifier over times in order to get a formula at
the top node.

Now, in English, the simple present tense cannot be used with
dynamic predicates to describe an event that is currently happen-
ing:

(63) Q: What are you doing?
A: #I mail the letter.

With dynamic predicates, the simple present gives rise to an iter-
ated or habitual interpretation (e.g. Whenever I finish writing to
my mother, I mail the letter right away). Statives are the only kind
of predicates that give rise to a non-habitual interpretation in En-
glish (e.g. I love Paris, I live in Paris, etc.).

In this respect, English contrasts with many other languages,
even its close relative, German. One possible way of accounting

Draft January 18, 2024



498 Tense and aspect

for the awkwardness of (63) would be to assume that in English,
the simple present contains perfective aspect, and that the time
of utterance is a mere instant of time. There is plenty more to say
about this issue, but we will leave it at that for the moment.

Exercise 6. Give a derivation tree for I mail the letter on which it
involves perfective aspect, and assume that the time of utterance
is a mere instant of time. Does this analysis explain the awkward-
ness of (63)? If so, why? If not, what additional or alternative as-
sumptions could you adopt in order to explain it?

There are quite a number of additional puzzles regarding the
present tense that we are not dealing with here. For instance, the
present tense behaves somewhat differently from the word now
(Kamp, 1971). Compare:

(64) a. Someday Susan will marry a man she loves.
b. Someday Susan will marry a man she loves now.

These two sentences mean something different; the former de-
scribes a man she will love in the future; the latter describes a
man she loves now. This contrast can be captured using Kratzer’s
(1998) notion of ‘zero tense’. A ‘zero tense’ for Kratzer is an indexed
time variable with no presuppositions (hence the name ‘zero’),
which must be bound by a local antecedent.3 We will maintain
the simple theory of the present tense in (62) for the time being,
though.

Future... tense? Now for the future. It is natural to suppose that
the English verb will is a tense that relates to a time located after

3Kratzer (1998) analogizes zero tenses to the phenomenon observed in sen-
tences like Only I did my homework, where the first person possessive pronoun
my seems to be interpretable without its first person feature, because the sen-
tence can mean ‘I am the only person x such that x did x’s homework’, not ‘I am
the only person x such that x did my (the speaker’s) homework.’
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utterance time. Using this idea, the lexical entry that is analogous
to the ones we have given for past and present would be as follows:

(65) FUT↝λP⟨i ,t⟩λt .[t > now∧P(t)]

However, some authors analyze will as a modal verb (Chomsky,
1957; Partee, 1973, i.a.). According to this view, what appears to be
a future tense is actually a combination of the present tense with
this modal. As Cable (2008) points out (building on observations
from Otto Jespersen’s seminal grammar of English), evidence for
this idea comes from the fact that will has a past tense variant,
would:

(66) (In 1981, Dave’s marriage was very stable.)
However, he would later learn (in 1987) that his wife was
cheating on him.

This sentence means that, spoken in 1981, the sentence “Dave
will learn that his wife is cheating” is true. If there is a past version
of will, then will must represent the combination of two elements,
a tense element and something else.

Following Abusch (1997), let us suppose that will and would
are present and past versions, respectively, of an underlying verb
WOLL, defined as follows:

(67) WOLL↝λP⟨i ,t⟩ .λt .[∃t ′ . t < t ′∧P(t ′)]

This element can combine with both present and past morphol-
ogy. Thus the ‘future’ is not a tense in English. A similar claim has
been made for St’át’imcets (Salish) by Matthewson (2006). The
sentence I will mail the letter will have the representation in Fig-
ure 12.2, ignoring the possibility that it may have perfective as-
pect.

Exercise 7. Assume that I will mail the letter involves perfective
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TenseP
∃t ′ .now < t ′∧mailt ′(i, l)

Tense
now

PRESENT

ModP
λt .[∃t ′ . t < t ′∧mailt ′(i, l)]

Mod
λP⟨i ,t⟩ .λt .[∃t ′ . t < t ′∧P(t ′)]

WOLL

vP
λt .mailt(i, l)]

I mail the letter

Figure 12.2: Derivation for I will mail the letter, ignoring perfective
aspect.

aspect, and give a derivation of the truth conditions for that sen-
tence that incorporates this assumption.

Exercise 8. Give a derivation tree for At 5pm, I would mail the let-
ter.

12.2.2.5 Perfect

In the spirit of Reichenbach, we adopt the following lexical entry
for the English perfect:

(68) PERFECT↝ λP⟨i ,t⟩ .λt .∃t ′ . t ′ < t ∧P(t ′)
‘Takes a predicate of times P , and returns a predicate of
times that is true of a time t if t follows t ′ at which P is
true.’
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This view is somewhat of an oversimplification; there are a num-
ber of different uses for the English perfect, including:

(69) a. Ed has put the cake in the oven. RESULTATIVE

b. Ed has visited Korea many times. EXISTENTIAL

c. Ed has lived in Korea for 3 years. UNIVERSAL

We set these uses aside, but see Bhatt & Pancheva (2005) for a good
overview of the issues involved, and arguments for a so-called ‘ex-
tended now’ theory of the perfect.

Exercise 9. Give a derivation tree for At 5pm, I had mailed the let-
ter.

12.3 Summary and outlook

This chapter has provided a brief introduction to the semantics
of tense and aspect. We argued that tenses can be indexical and
anaphoric, and have introduced reference to times in our repre-
sentation language. We have adopted a view of viewpoint aspect
as a way of signalling inclusion relations between temporal inter-
vals, the future as a kind of aspectual operator, and the English
perfect as a device for shifting the event time prior to the refer-
ence time.

We have left a number of important issues unresolved. Some
of these have been noted along with way. One phenomenon that
we have not covered at all is so-called ‘sequence of tense’. Exam-
ples include the following:

(70) John decided a week ago that in ten days he would say to
his mother that they were having their last meal together.
(Abusch, 1988)

(71) John said he would buy a fish that was still alive.
(Ogihara, 1989)
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(72) Mary predicted that she would know that she was preg-
nant the minute she got pregnant.
(Kratzer, 1998)

In each of these examples, the bolded phrase is morphologically
past tense, but is not interpreted as such. Several authors, start-
ing with Ogihara (1989), have suggested that the tense feature is
not semantically interpreted, and that the tense is interpreted as
a bound variable. See von Stechow & Gronn (2013a,b) for a recent
overview of the discussion. Even more recently, the conversation
has been extended to include optional tense languages such as
Washo (Bochnak, 2016) and Tlingit (Cable, 2017), in which the hy-
pothesized LF structure is what surfaces in the language.
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13 ∣ Intensional semantics

13.1 Necessity and possibility

13.1.1 Necessary vs. contingent

This chapter deals with modality. To a first approximation, modal-
ity has to do with ways of being true. Two true sentences can be
true in different ways. For instance, both of the following sen-
tences are true.

(1) a. Ruth Bader Ginsburg is the first person to be on both
Harvard Law Review and Columbia Law Review.

b. Ruth Bader Ginsburg is Ruth Bader Ginsburg.

But they are true in very different ways. (1a) expresses something
which might well have turned out to be false. (1b) expresses some-
thing that would still have been true even if things had been very
different; it could not have failed to be true. To put it differently,
the first expresses a CONTINGENT proposition; the second expresses
a NECESSARY one. (As usual, by PROPOSITION, we mean ‘some-
thing that can be true or false’. Like sentences, propositions can
be true or false; unlike sentences, they are language-independent
objects. For example, two people who speak different languages
might express the same proposition using different sentences.)

Reflecting the fact that (1a) is contingent and (1b) is necessary,
they give rise to claims of different truth status when they are em-
bedded under necessarily:
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(2) a. Ruth Bader Ginsburg is necessarily the first person to
be on both Harvard Law Review and Columbia Law Re-
view. (False)

b. Ruth Bader Ginsburg is necessarily Ruth Bader Gins-
burg. (True)

Similarly, the negation of (1a) is possible while the negation of (1b)
is not:

(3) a. Ruth Bader Ginsburg might not have been the first per-
son to be on both Harvard Law Review and Columbia
Law Review. (True)

b. Ruth Bader Ginsburg might not have been Ruth Bader
Ginsburg. (False)

Words like necessarily and might are thus sensitive to the distinc-
tion between necessary and contingent true propositions.

Contingence and necessity are MODAL properties of proposi-
tions. MODALITY refers to ways language can express various re-
lationships that propositions bear to truth. Modality is expressed
by adjectives like necessary, possible, and contingent; adverbs like
necessarily, possibly, and maybe; auxiliaries like must, may, might,
can, and could; and many more expressions. This chapter de-
velops a formal treatment of modal language. The tools we de-
velop in this chapter are heavily influenced by Montague’s (1974b)
Intensional Logic (IL), but ultimately we will settle on a manner
of representing intensional phenomena that adheres to Gallin’s
(1975) Ty2, a logic that includes a type s for possible worlds.

Exercise 1. Give an example of two contingent sentences of En-
glish that have the same truth value relative to the actual world
but express different propositions.
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Exercise 2. Like true sentences, false sentences can be either CON-
TINGENTLY FALSE (false in the actual world but true in other pos-
sible worlds) or NECESSARILY FALSE (false in all possible worlds).
Give an example of two false sentences, one which is necessarily
false, and one which is merely contingently false.

13.1.2 Modality and inference

The logic of necessity and possibility mirrors the logic of universal
and existential quantification. The negation of a necessity state-
ment like (4a) is equivalent to a possibility statement about a nega-
tion as in (4b).

(4) a. It’s not necessary for you to take out the trash.
b. It’s possible for you not to take out the trash.

Similarly, to the negate the possibility of a negation is to state the
necessity of what is negated:

(5) a. It’s not possible for me not to pay the fine.
b. It’s necessary for me to pay the fine.

These patterns can be understood under a treatment of these op-
erators in a logic where necessity involves universal quantification
and possibility involves existential quantification.

In MODAL LOGIC, there is a formal representation language in
which it is possible to make statements about necessity and possi-
bility. The most widespread semantics for modal logic, POSSIBLE-
WORLD SEMANTICS, provides an elegant account of this kind of
reasoning. The idea is to treat necessarily and possibly as univer-
sal and existential quantifiers over possible worlds respectively, in
analogy to the definitions of necessary and possible propositions
mentioned above. A proposition is then deemed to be NECESSARY

just in case it is true in all relevant possible worlds; and a proposi-
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tion is POSSIBLE just in case it is true in at least one relevant possi-
ble world.

Modal logic does not involve explicit quantification over pos-
sible worlds in the representation language; instead, two opera-
tors are used, ◻ ‘box’, expressing necessity, and ◇ ‘diamond’, ex-
pressing possibility. These operators are added to propositional
logic or to predicate logic, yielding propositional modal logic or
propositional predicate logic respectively.

As a first approximation, ◻φ is true just in case φ is true in
every possible world; and ◇φ is true just in case φ is true in some
possible world. Under this semantics, ◻ and ◇ are, essentially,
quantifiers over hidden variables. It follows that there are many
parallels between ◻ and ∀, and between ◇ and ∃. For example,

¬◇¬φ

and
◻φ

are equivalent, and this can be used to explain the equivalence of
the English sentences (5a) and (5b). In this way,◻ and◇ are duals
of each other, just like ∀ and ∃ are.

In fact, it is possible to simulate modal logic in predicate logic
by bringing out the hidden variables into the open, binding them
with ordinary quantifiers, and dispensing with the boxes and di-
amonds. To this end, we introduce variables w , w ′, w ′′, etc, that
range over possible worlds. Let annapayfinebe a predicate of worlds
that holds of a world w if Anna pays a fine in w . Then when Anna
utters (5b) (It’s necessary for me to pay a fine), the content of her ut-
terance can be captured using the following kind of formula, with
universal quantification over possible worlds:

(6) ∀w .annapayfine(w)

(Compare the representation in modal logic: ◻annapayfine.) Like-
wise, the equivalent sentence invoking possibility ((5a); It’s not
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possible for me to not pay a fine) can be represented using exis-
tential quantification:

(7) ¬∃w .¬annapayfine(w)

(Compare the modal logic representation: ¬◇¬annapayfine.) We
can leverage what we know about quantification in predicate logic
to understand why (6) and (7) are equivalent.

For simple cases like the equivalence between (5a) and (5b),
modal logic and its simulation in predicate logic amount to the
same thing. But we will see later that there are things one can ex-
press with explicit quantification over worlds that are impossible
to express in modal logic. Another deficiency of the simple sys-
tem of modal logic we have presented so far is that it glosses over
distinctions among modal ‘flavors’, which we discuss next.

13.1.3 Modals: Strength and flavor

Imagine you’re trying to determine if a certain mathematical state-
ment is true or false. After a while, you come to believe that the
statement is in fact true, and you even come up with a proof. You
think your proof is probably correct, but there’s a chance you’ve
made a mistake. So you might say to yourself:

(8) It’s possible that the statement I’m trying to prove is true,
and it’s possible that it’s false.

In a sense, this is correct: you don’t know for sure if the statement
is true or false. It might turn out either way. But in another sense,
this is incorrect. Mathematical statements are true necessarily
if they are true at all. Otherwise, they are necessarily false. The
statement you’re trying to prove is no different. Even though you
don’t know if it is true, in itself it’s either necessarily true or nec-
essarily false; in the first case, it’s impossible that it’s false, in the
second case it’s impossible that it’s true.

This case illustrates two different senses of the word possi-
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ble. The first sense, possible for all I know, is called EPISTEMIC

(from the Greek word for “knowledge”) or SUBJECTIVE; the second
sense, possible in itself, is called METAPHYSICAL or OBJECTIVE. It is
epistemically contingent whether a mathematical statement that
lacks a proof is true or false; if it is in fact true, it is metaphysically
necessary for it to be true. These senses are called MODALITIES.

Epistemic modality and metaphysical modality are examples
of MODAL FLAVORS. Other flavors include DEONTIC modality, which
relates to rules and norms as determined by some source of au-
thority such as a parent, school policy, societal custom, or law.
With deontic modality, possibility corresponds to permission and
necessity to obligation. Examples (5a) It’s not possible for me to
not pay the fine and (5b) It’s necessary for me to pay the fine ex-
press necessity in relation to a set of rules established by a soci-
ety (obligation, in other words), so they involve deontic modality.
BOULETIC modality has to do with the desires of a given agent; the
verb want expresses bouletic modality.

In English, many modal expressions are ambiguous between
different modal flavors, and are disambiguated by tense, context,
and other factors.

(9) a. There may/might/must be a fly in this room. epistemic
b. The coin might/could/would have landed on tails. meta-

physical
c. Visitors may/must check in at the front desk. deontic

While it is not easy to pin down the concepts of metaphysical pos-
sibility and necessity, there is one clear way in which they can
be distinguished from epistemic possibility and necessity. The
epistemic modalities are subjective in the sense that they depend
on people’s knowledge, and different people can know different
things. For example, if I know that there is a fly in this room but
you don’t know if it’s a fly or a mosquito, then There is a fly in this
room is epistemically necessary for me but merely epistemically
possible for you. By contrast, the metaphysical modalities are ob-
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jective: for example, whether a coin that actually lands on heads
could have landed on tails instead depends on whether the coin
is rigged (and whether the world is deterministic) but not on what
anyone knows about the coin.

Flavor is not the only dimension along which modals can vary.
Another is STRENGTH (or FORCE). Necessity modals like need and
must are STRONG modals, because they express necessity, while
possibility modals like may and can are WEAK modals, express-
ing possibility. The logic of possibility and necessity is still in play
even when we take flavor into account. For instance, strong and
weak deontic modals relate to each other as duals; for example
You must not φ is equivalent to It is not allowed to φ.

Later in the chapter, we will capture the logical interaction be-
tween strong and weak modals while allowing for the nuance of
modal flavor by letting different flavors of modality involve quan-
tification over different sets of possible worlds. For metaphysical
modals, these are all the possible worlds that are metaphysically
possible; for epistemic modals, they are all the possible worlds
compatible with the speaker’s (or the relevant agent’s) knowledge;
for deontic modals, these are all the possible worlds compatible
with the speaker’s (or relevant agent’s) obligations.1

13.2 Intension vs. extension

In building a compositional system for handling modality, it is
useful to distinguish between two types of denotation that an ex-
pression can have: intension and extension. Modal words like
necessarily, for example, are sensitive to the intensions of the sen-
tences that they combine with. Let us explain what what we mean
by that.

1This insight is developed in work by Angelika Kratzer (e.g. Kratzer 1981), who
distinguishes between a ‘modal base’ (a set of possible worlds) and an ‘ordering
source’ (a set of propositions that can be used to rank worlds); see for example
Kratzer (1981).
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It just so happens that (so far as we know) every species that
has a heart also has a kidney. In the actual world, creature with
a heart picks out the same set that creature with a kidney does.
In this sense, these two expressions are COEXTENSIONAL, i.e., they
have the same EXTENSION (in the actual world; we will drop this
qualification from here on in). But it could have been otherwise;
there are other possible worlds where there are creatures that have
hearts but no kidneys, or vice versa. So at some level, these two
expressions do not have the same meaning, even though relative
to the actual world, they pick out the same set of individuals.

This example was used by Quine (1951) in a discussion of the
difference between INTENSION and EXTENSION. Intension and ex-
tension can be thought of as two different semantic values that an
expression has. Observe that intension is spelled with an ‘s’; this
crucial letter distinguishes it from the entirely separate concept of
intention with a ‘t’. The intension of an expression like creature
with a heart can be formally represented as a function that takes
as input a world w and returns the extension of the expression at
that world. Given the actual world, the intension of creature with
a heart returns the same set that the intension of creature with
a kidney does. But there are other worlds for which the sets re-
turned are different. So they are not COINTENSIONAL; they do not
have the same intension. Another way of putting it is that they are
not INTENSIONALLY EQUIVALENT.

Referential expressions have intensions and extensions too,
and we can find examples of referential expressions that are co-
extensional but not cointensional. For example, the definite de-
scription (10a) happens to be coextensional with the name (10b):

(10) a. the first person to serve on both Harvard Law Review
and Columbia Law Review

b. Ruth Bader Ginsburg

In the actual world, these two expressions refer to the same indi-
vidual, RBG for short. But imagine a possible world in which the
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forces of patriarchy are just a little bit stronger, and a man is the
first to serve on both these law reviews. Relative to that world, the
name in (10b) still refers to RBG (she is still the same person), but
the definite description in (10a) has a different referent.

We can make sense of this intuition by identifying the exten-
sion of each name or definite description with a particular indi-
vidual, and by identifying the intension of each name or definite
description with a (possibly partial) function from possible worlds
to individuals. Such a function is called an INDIVIDUAL CONCEPT.
We treat the intension of (10a) as a partial function which maps
each world to whichever woman, if any, was the first to serve on
both law reviews in that world. By contrast, we treat the inten-
sion of (10b) as mapping every possible world (or at least every
possible world in which RBG exists) to RBG. This kind of func-
tion is called a RIGID DESIGNATOR; Kripke (1979) famously argued
that proper names denote rigid designators. On this view, the two
noun phrases in (10) have different intensions, although they are
coextensional.

Sentences, too, have both intensions and extensions. Follow-
ing in Frege’s footsteps, as is common, we take the extension of
a sentence to be a truth value, such as T or F. It follows that any
two true sentences are coextensional. (The same goes for any two
false sentences.) For instance, these (1a) and (1b) are coexten-
sional, because they are both true.

Clearly, the extension of a sentence cannot be its meaning;
otherwise (1a) and (1b) and all other true sentences would have
the same meaning (and so would all false sentences). A com-
mon approach is to say that sentence meanings are propositions,
and that two sentences have the same meaning just in case they
express the same proposition. Assume that propositions are the
kinds of things that one believes, knows, doubts, etc. Since some-
one might doubt (1a) without doubting (1b), or might believe (1b)
without believing (1a), these two sentences must express different
propositions.
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Formally, it is common to model a proposition as a set of pos-
sible worlds. The proposition expressed by a sentence (and more
generally by any sentential clause, embedded or not) is the set of
possible worlds in which the sentence is true. The intension of a
sentence can be seen as the proposition it expresses, or the char-
acteristic function thereof, that is, a function from possible worlds
to truth values.

The intension of a necessary sentence maps every possible
world to the truth value T; the intension of a contingent sentence
maps some possible worlds to Tand others to F. Since (1a) is con-
tingent and (1b) is necessary, they do not have the same intension,
even though they are coextensional. The contrasts between those
two sentences with respect to modals like necessarily and might
can be traced back to these differences at the intensional level.

Exercise 3. Give an example of two distinct sentences of English
that are cointensional. In addition, specify whether they are nec-
essarily true, necessarily false, or contingent.

13.3 Opacity puzzles

13.3.1 Substitutability and its failures

With the distinction between intension and extension in hand, let
us now present a puzzle that was observed by Gottlob Frege. Frege
observed that the logic of natural language does not always ad-
here to the following principle:

(11) Substitutability of coextensional expressions
If two expressions have the same extension, then if one is
substituted for the other in any given sentence, the truth
value of the sentence remains the same.

This principle is very useful in mathematics; for example, 6*(3+2)=30
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and 6*5=30 have the same truth value because (3+2) and 5 have
the same extension (recall the discussion in Chapter 1).

The semantics we have developed so far has also adhered to
this principle. And indeed, in many cases it is safe to follow. For
example, the following argument is valid:

(12) a. Ruth Bader Ginsburg was the first person to be on both
Harvard Law Review and Columbia Law Review.

b. No law firm in New York City hired Ruth Bader Gins-
burg after she finished law school.

c. Therefore, no law firm in New York City hired the first
person to be on both Harvard Law Review and Columbia
Law Review after she finished law school.

The conclusion is licensed by the fact that Ruth Bader Ginsburg is
the first person to be on both Harvard Law Review and Columbia
Law Review – these two noun phrases denote the same person, so
they are coextensional.

But there are examples where the principle of substitutability
of coextensionals does not hold. We already saw one instance of
this above, with examples (3a) and (3b), repeated here:

(13) a. RBG might not have been the first person to serve on
the Harvard Law Review and the Columbia Law Re-
view.

b. RBG might not have been RBG.

To convince your neighbor that (13a) is true, you could simply
point out that there was nothing inevitable about Ruth Bader Gins-
burg’s career. If she had decided to become, say, a postal worker,
she might well not have worked on any law journals. There is a
natural reading of (13a), perhaps its most prominent one, which
seems true for this reason. By contrast, even if she had become a
postal worker, she would still have been herself; even if she had
had a different name, she would still have been herself; in this
sense, (13b) is clearly false. (Here, we are focusing on the read-

Draft January 18, 2024



514 Intensional semantics

ing of (13b) that is similar to RBG might have been someone else
or RBG might have been distinct from herself. To the extent that
(13b) can also be used to express that RBG might have had a dif-
ferent name, we set that reading aside.) Indeed, it seems hard
to imagine what it would even take for (13b) to be true. Accord-
ingly, following Kripke (1980), it is commonly held that identity is
a metaphysically necessary relation. No individual could fail to be
identical to itself, even under vastly different circumstances. (The
kind of identity we are talking about here is NUMERICAL IDENTITY:
it is the relation that each thing bears only to itself. It is not about
self-conception, social presentation, or any other properties that
make a thing or person unique.)

As with modals, we find violations of the principle of substi-
tutability of coextensionals with verbs expressing attitudes towards
propositions (i.e. PROPOSITIONAL ATTITUDE VERBS) such as believe,
know and want. We find violations of substitutability of coexten-
sionals here as well. For example, (14) does not imply (15).

(14) Mary believes that RBG is RBG.

(15) Mary believes that RBG is the first person to serve on Har-
vard Law Review and Columbia Law Review.

Environments in which the principle of substitutability of co-
extensionals fails are called OPAQUE. As we have seen, modals and
propositional attitude verbs give rise to opaque environments. En-
vironments where the principle of substitutability of coextension-
als succeeds are called TRANSPARENT. An example of a transparent
environment is negation, as you may recall, is a ‘truth-functional’
connective. In other words, the truth value of the negation of
a sentence depends only on the extension of the sentence being
negated. To put it in yet another way, negation is an extensional
operator, in contrast to modals, which are intensional operators.

Among the challenges in developing a theory of modality is to
explain the failure of substitutability of co-extensionals in opaque
environments. The solution will build on the idea that intensional
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operators combine with the intensions, rather than the extensions,
of their complements. For example, belief is a relation between
the subject of believe and the proposition (rather than the truth
value) of the sentential clause embedded by believe.

13.3.2 Veridicality

Another valid argument involving modal operators involves the
inference from necessary truth to simple truth:

(16) a. Necessarily, this bottle is made of plastic.
b. ∴ This bottle is made of plastic.

From possible truth, of course, we cannot get to simple truth:

(17) a. Possibly, this bottle is made of plastic.
b. /∴ This bottle is made of plastic.

This illustrates that the modal adverb necessarily, unlike possibly
is VERIDICAL; that is, necessarily entails the truth of its proposi-
tional argument.

A similar distinction can be found within propositional atti-
tude verbs. For example, know, notice, and see are veridical, but
believe and doubt are not. Thus, (18a) does not entail (18b):

(18) a. Mary believes that Fred is in Paris.
b. /∴ Fred is in Paris.

Similarly, (19a) does not entail (19b).

(19) a. Mary believes that a unicorn is eating her parsnips.
b. /∴A unicorn is eating Mary’s parsnips.

A theory of modality should capture the fact that necessarily is
veridical, but believe is not.
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13.3.3 Existential import

In fact, (19a) does not even entail that there are unicorns; all it en-
tails is that Mary believes that there are unicorns. In other words,
(19a) lacks EXISTENTIAL IMPORT with respect to the indefinite a
unicorn.

Propositional attitudes can also be expressed by transitive verbs
that take a noun phrase direct object, and in such cases we ob-
serve the same effect. Thus, while (20a) implies that there is at
least one sloop (a type of sailboat), (20b) need not do so:

(20) a. Andrea sees a sloop.
b. Andrea wants a sloop.

As Quine (1956) puts it, example (20b) can be interpreted to mean
that Andrea merely seeks relief from slooplessness, and not a par-
ticular sloop; no sloops need even exist for the sentence to be true.
Thus a representation of the following kind would not do:

Borrowing Quine’s metaphor, verbs like believe, want, and look
for ‘seal off’ the complement clause. As a consequence, the exis-
tential import of the complement clause is not inherited by the
sentence as a whole. Lack of existential import under such verbs
is among the phenomena we wish to capture in this chapter.

13.3.4 De dicto vs. de re

Although (20b) has a reading on which it does not commit the
speaker to the existence of sloops, there is another reading, too. It
could also be interpreted to mean that there is a particular sloop
that Andrea wants (as in Andrea wants a sloop, namely mine). The
two readings involved here are called DE RE (‘of the object’) and
DE DICTO (‘of the word’).2 On the de re reading, Andrea has a de-

2A similar distinction may have been anticipated by Aristotle and is discussed
by the medieval logician Abelard, whom we encountered in Chapter 4. The
terms themselves appear for the first time about one century later in the writ-
ings of Saint Thomas Aquinas, the philosopher and theologian.
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sire for a particular sloop: Regarding that sloop, she wants it. The
de dicto reading is the one on which she merely seeks relief from
slooplessness. In the latter case, the desire is not about a partic-
ular object, rather it is about whether Andrea ends up having a
sloop. In this sense, Andrea’s desire is for the false proposition
that Andrea has a sloop to become true.

Not only propositional attitude verbs but modals too give rise
to de re / de dicto ambiguities. To understand the point of the fol-
lowing example, you have to know that the first man in space was
the Russian Yuri Gagarin.

(21) The first man in space might have been an American. (Evans,
1977)

This sentence is ambiguous. When the definite description the
first man in space is read de dicto with respect to the modal might,
the resulting reading can be paraphrased as It might have been the
case that an American would have been the first man in space; that
is, the Americans could have won this episode of the space race.
When it is read de re, the resulting reading can be paraphrased
as Concerning the first man who actually reached space, he might
have been an American; that is, Gagarin could have been a U.S.
citizen.

Quine (1956) illustrated the de dicto / de re ambiguity with ex-
amples like the following:

(22) a. Ralph believes that someone is a spy.
b. Ralph believes that the man in the brown hat is a spy.

Consider first example (22a). On the de re reading, Ralph has a be-
lief about a particular object/individual: There is someone about
whom Ralph believes that this person is a spy. On the de dicto
reading, Ralph has no particular individual in mind; he just be-
lieves that there are spies. The belief is not about a particular in-
dividual, rather it’s about the proposition that there is a spy. Ralph
believes that the proposition is true. The de dicto interpretation
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does not entail that there are, in fact, any spies; it only entails that
Ralph believes there is one. For example (22b), the difference be-
tween the two readings comes down to whether it is Ralph (in the
de dicto reading) or the speaker (in the de re reading) who would
describe the person in question as wearing a brown hat.

Consider another example:

(23) Mariel wants to dance with a drummer.

On one interpretation, there is a specific drummer who Mariel
wants to dance with. Mariel may not even know that the person
in question is a drummer; her desire is just to dance with that per-
son. This is the de re interpretation, as her desire is de re with re-
spect to a particular individual. On the de dicto interpretation,
there is no specific drummer that Mariel want to dance with; her
desire is for the proposition that Mariel dances with a drummer
to become true. This desire would be satisfied in any world where
there is some drummer, any drummer, that she is dancing with.3

Exercise 4. Consider the following case from Anderson (2014):

In 1869, an English court considered the case of
Whiteley v. Chappell, in which a man who had voted
in the name of his deceased neighbor was prosecuted

3 The de re/de dicto distinction is related to the distinction between specific
and nonspecific indefinites. In many languages, indefinites can be marked for
specificity using what is known as Differential Object Marking (DOM). For ex-
ample, in Spanish, the object of verbs like buscar “look for” is optionally marked
by the preposition a to indicate specificity:

(i) a. Juan busca a un profesor.
b. Juan busca un profesor.

Sentence (ia) expresses that there is a specific teacher Juan is looking for (so un
professor is understood de re), while (ib) expresses that Juan is not looking for any
teacher in particular but merely wants the proposition that he finds a teacher to
become true (so un professor is understood de dicto).
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for having fraudulently impersonated a “person en-
titled to vote.” The court acquitted him, albeit re-
luctantly. There had been voter fraud by imperson-
ation, certainly. But the court fixated on the object
of the impersonation and concluded that because a
dead person could not vote, the defendant had not
impersonated a “person entitled to vote.” The court
attributed the mismatch between this result and the
evident purpose of the statute to an oversight of the
drafters: “The legislature has not used words wide
enough to make the personation of a dead man an of-
fence.”

How would you characterize the de re and de dicto interpretations,
respectively, in this case? Which interpretation does the court ap-
pear to have taken? Is there an interpretation on which the man is
guilty? Explain why or why not.

In the following section, we will build up some tools that will
allow us to capture the de dicto vs. de re ambiguity, to explain the
lack of existential import with opaque verbs, and to explain why
coextensional expressions cannot always be substituted for each
other. We will start with a discussion of intensional models, which
include a set of possible worlds. We will then present Gallin’s Ty2,
a logical representation language with two types other than t (hence
the name), one for individuals as before (e) and one for possible
worlds (s).

13.4 Representing intensionality

We now modify our system from previous chapters so that it pro-
vides access to the propositions expressed by sentences. More
generally, the system we develop in this section provides access

Draft January 18, 2024



520 Intensional semantics

to the intensions of expressions along with their extensions.

13.4.1 Intensional models

Let us return to this example:

(24) Mariel wants to dance with a drummer.

The de re reading of this example can be paraphrased: ‘There is
an entity x such that x is a drummer and Mariel wants to dance
with x.’ The de dicto reading can be paraphrased, ‘What Mariel
wants is for it to be true that there is a drummer that she dances
with.’ Before we develop a logical representation language that we
can use to capture these two readings, let us first consider what it
is that we want to represent. Under what circumstances, exactly,
would each of these readings be considered true?

In constructing a semantics for desire claims, it is useful to
keep in mind that desires are contingent rather than necessary
states of affairs. It is perfectly reasonable to imagine two distinct
possible worlds w and w ′, which differ with respect to what Mariel’s
desires are in them. In other words, claims about desire can be
true in one world and false in another. So it is important to be able
to evaluate the truth of a claim relative to various different worlds.
The WORLD OF EVALUATION is the world relative to which we are
evaluating the truth of a sentence. If one is interested in truth rel-
ative to the actual world, then the world of evaluation should be
the actual world.

Let us assume that the meaning of the verb want can be con-
strued in terms of a ternary relation between:

• an individual x (Mariel in this example)

• a world w (the world of evaluation), and

• a set of worlds, containing all and only those worlds in which
all the desires that the individual has at w are fulfilled (the
‘desire worlds’).
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As desire is a bouletic-flavored genre of modality, those worlds w ′

can be called the BOULETICALLY ACCESSIBLE POSSIBILITIES (for x
in w), or just x’s DESIRE WORLDS (in w) for short. If Mariel wants
a proposition φ, then φ holds in all of her desire worlds. On the
analysis we will develop, the two readings of (24) will be analyzed
as follows:

• The de dicto reading is true in a given world of evaluation
w just in case, in every desire world w ′ of Mariel’s in w , she
dances in the desire world w ′ with someone who is a drum-
mer in the desire world w ′.

• The de re reading is true in a given world of evaluation w
just in case there is some individual x who is a drummer in
the world of evaluation w and in every desire world w ′ of
Mariel’s in w , she dances with x.

To provide an ontological foundation for this idea, it will be
useful to incorporate possible worlds into our models. So rather
than assuming that a model M is just a pair ⟨D, I⟩, where D is a set
of individuals and I is an interpretation function assigning deno-
tations to each of the non-logical constants, as we have been do-
ing, let us assume that a model M further specifies a set of worlds
W . A so-called KRIPKE MODEL M is a triple ⟨D, I ,W ⟩, specifying
a domain of individuals, an interpretation function, and a set of
possible worlds.

For purposes of illustration, let us consider a model where in
some of the worlds in W , Mariel dances with a drummer. Let us
assume that there are only four worlds, w0, w1, w2, and w3. As-
sume that in w1 and w2, Mariel dances only with Ruth. In w3,
she dances only with Leo. In w0, she dances with nobody. This
information, along with who is a drummer in each world, is sum-
marized in Table 13.1. Notice that in w2, Mariel dances only with
Ruth, and since Ruth is not a drummer in that world, it is not true
in w2 that Mariel dances with a drummer. In w3, Mariel dances
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w0 w1 w2 w3

drummers Ruth Ruth Leo Leo
Mariel dances with nobody Ruth Ruth Leo
Mariel desires {w1, w3} {w1, w2} {w1, w2} {w0}
(24) de dicto T F F F
(24) de re F T F F

Table 13.1: Above midline: Partial specification of a Kripke model.
Below midline: truth status of two readings of (24) Mariel wants to
dance with a drummer in each world. Mariel dances with a drum-
mer is true in w1 and w3.

only with Leo, and since Leo is a drummer in w3, it’s true in w3

that Mariel dances with a drummer.
Recall that Mariel’s desires may well vary from world to world

just as other things do. Suppose that in w3, she doesn’t want to
dance with anybody, even though she happens to be dancing with
Leo. In other words, in w3, the only world among her desire worlds
(the worlds that satisfy her desires) is w0. Mariel’s desire worlds in
each world are likewise specified as in Table 13.1. Building on our
assumption that x wants φ in w is true if and only if φ holds in all
of the individual’s desire worlds, we have all of the information we
need in order to evaluate the truth or falsity of (24) (Mariel wants
to dance with a drummer) on various readings at various worlds.

In w3, the sentence is false on any reading. In w3, Mariel just
doesn’t want to dance with anybody, drummer or not.

Notice that in w0, Mariel’s desire worlds are w1 (where she
dances with Ruth, a drummer in that world) and w3 (where she
dances with Leo, a drummer in that world). Then, in every one of
her desire worlds, she dances with somebody who is a drummer
in that world. That means that, relative to w0, the de dicto reading
of (24) is true.
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In w1, Mariel’s desire worlds are w1 and w2. In both of these
worlds, she dances with Ruth, who happens to be a drummer in
w1, though not in w2. In w1, then, Mariel wants de re to dance
with someone, namely Ruth; and Ruth is a drummer. So the de re
reading of (24) is true in w1. This is so even though Ruth is not a
drummer in w2 — but the de dicto reading of (24) is false in w1 for
that reason.

Finally, in w2, Mariel’s desire worlds are again w1 and w2. She
just wants to dance with Ruth. But Ruth is not a drummer in w2.
So although in w2 Mariel does want de re to dance with someone
(namely Ruth), it is not the case that she wants de re to dance with
a drummer. So the de re reading of Mariel wants to dance with a
drummer is false in w2, an is its de dicto reading.

13.4.2 Representing worlds explicitly

We now present a theory of modality in the style of Gallin (1975),
which, in contrast to modal logic and Montague’s Intensional Logic,
brings out the hidden world variables out into the open, just as
we have seen in the simulation of modal logic in predicate logic in
Section 13.1.2. Gallin’s system is called Ty2, in reference to the fact
that along with the basic type t , there are two other basic types: e
for individuals and s for worlds. The fact that s is a basic type
means that there are expressions of the language that denote pos-
sible worlds. These may in principle be either constants, picking
out particular worlds, or variables. For variables of type s, we will
use indexed strings of the form wi , where i is an integer, such as
w0, w1, w2, etc. We use w as an abbreviation for w0 and w ′ as an
abbreviation for w1, etc.

By exposing world variables and making them accessible to
quantifiers, Ty2 provides the means to account for contrasts that
are beyond the reach of the boxes and diamonds of modal logic
and Intensional Logic. The following is based on a classical exam-
ple due to Cresswell (2012):
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(25) It might have been that everyone rich was poor.

One reading of this sentence is nonsensical. It says that things
could have been different in such a way that being rich entails be-
ing poor. In Intensional Logic:

(26) ◇∀x[rich(x)→ poor(x)]

Another reading, which is sometimes paraphrased as It might have
been that everyone who is in fact (or: actually) rich was poor, says
that things could have been different in such a way that every-
body who is rich as things stand in the actual world would in that
case have been poor. Or to put it differently, it says that things
could have been turned out in such a way that none of the people
who really are rich would have been rich. This is true, for exam-
ple, if you believe that it would be possible for every rich person
to simultaneously give all their money to a poor person, or if you
believe that the global world economy to tank in such a way that
everyone becomes poor.

But this reading can’t be expressed in IL using boxes and dia-
monds and hats. In particular, this won’t work:

(27) ∀x[rich(x)→◇poor(x)]

This says that for every rich person, there is a possibility that that
person could have been poor. It could be different possibilities
for different rich people. Or in other words, nobody who is rich
is rich of necessity. This can be true even if it would have been
impossible for everyone to be poor at the same time.

The relevant reading can be captured by the following Ty2 for-
mula, where w is the world of evaluation, and w ′ is the counter-
factual world the sentence is talking about:

(28) ∃w ′ .∀x .[richw(x)→ poorw ′(x)]

Hence it seems that natural language requires explicit use of world
variables, as in Ty2.
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13.4.3 Definitions for Ty2

13.4.3.1 Syntax of Ty2

The syntax of Ty2 is exactly the same as the syntax for Lλ, with the
exception that there are now two basic types along with t , namely
e and s (hence the name, ‘Ty2’). That means in particular that
there are expressions of type s, denoting possible worlds. As usual,
if σ and τ are types, then so is ⟨σ,τ⟩.

We take from Lλ the rules for forming basic expressions: For
every type τ, there is:

• a possibly empty set of constants Conτ

• an infinite set of variables Varτ, each bearing a natural num-
ber as an index, one for each natural number. (The index 0
can be suppressed, so x is an abbreviation of x0. Primes may
also be used in place of numbers, so x′ abbreviates x1, and
x′′ abbreviates x2, etc. Abbreviated and non-abbreviated
forms should not occur in the same formula, to avoid con-
fusion.)

As before, we use the following typing conventions:

• variables of the form xi , yi or zi ; where i is an integer, are
variables of type e;

• variables of the form Pi or Qi are of type ⟨e, t⟩;

• variables of the form Ri are of type ⟨e,⟨e, t⟩⟩.

In addition:

• variables of the form wi are of type s;

• variables of the form pi are of type ⟨s, t⟩;

• variables of the formPi are of type ⟨s,⟨e, t⟩⟩.
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Outside of these conventions, we sometimes indicate the type of
a variable by means of an additional subscript.

To form complex expressions, Ty2 includes the rule of Appli-
cation, forming type τ expressions of the form [α(β)] whereα has
type ⟨σ,τ⟩ and β has type σ. When β is of type s, we write αβ as a
shorthand for α(β). Identity statements can be formed as usual:
If α and β are expressions of the same type, then α = β is a for-
mula (an expression of type t ). The connectives of propositional
logic apply to expressions of type t in the usual way, and ∀ and ∃
also create formulas in the usual way, quantifying over variables
of any type. Lambda abstraction is also defined as usual: Ifα is an
expression of type τ and u is a variable of typeσ then [λu .α] is an
expression of type ⟨σ,τ⟩.

13.4.3.2 Semantics of Ty2

The semantic value of a well-formed expression α is defined rel-
ative to a Kripke model M , which specifies a set W of possible
worlds along with a set of individuals D . Let T be the set of types
(e for individuals, t for truth values, s for possible worlds, ⟨e, t⟩
for functions from individuals to truth values, etc.). For each type
τ ∈ T , the model determines a corresponding domain Dτ. Follow-
ing our usual manner, we define the ‘standard frame based on D
and W ’ as an indexed family of sets (Dτ)τ∈T , where:

• De =D

• Ds =W

• D t = {T,F}

• for any types σ and τ, D⟨σ,τ⟩ is the set of functions from Dσ

to Dτ.

A MODEL for Ty2 based on D and W , then, is a pair ⟨(Dτ)τ∈T , I⟩,
where (Dτ)τ is a standard frame based on D and W .
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The interpretation function I has all of the non-logical con-
stants in its domain, and associates a denotation in Dτ to every
non-logical constant of type τ, just as in Lλ. If α is a non-logical
constant, then JαKM ,g = I(α). And as usual, if α is a variable, then
JαKM ,g = g(α). The semantic rules for the logical connectives and
the variable binders are exactly the same as in Lλ as well. No sur-
prise, then, that equality is defined just as in Lλ too: Jα =βKM ,g =T
iff JαKM ,g = JβKM ,g .

The idea that an individual might exist in one world but not
in another can be represented using a world-dependent existence
predicate of type ⟨s,⟨e, t⟩⟩. For instance, the following expression:

(29) existsw(x)

can be used to express the idea that ‘x’ exists in w . Doing so com-
mits us to a so-called POSSIBILIST view on existence, where there
are things (in the model) which do not exist (in whichever world
we happen to be in) but could exist. On an ACTUALIST view, there
is nothing that could exist but doesn’t actually exist.4

13.4.4 Translating from English to Ty2

Now let consider how to translate a few selected expressions of
a natural language, namely English, into Ty2. The lexicon of this
fragment will be set up in such a way as to specify, for each lexical
item, a translation into Ty2 that represents its extension at a given
world of evaluation.5 Following Gallin (1975), English expressions
whose extension depends on an evaluation world will be trans-

4For more on possibilism vs. actualism, see the Stanford Encyclopedia of Phi-
losophy entry on ‘Actualism’.

5In this way, we follow in the footsteps of Groenendijk & Stokhof (1982) and
Clifford (1990), although the latter treats logical words like every differently than
we do here, and has a slightly different system of semantic composition. Other
systems that use explicit world variables, like the one used in Romero (2008),
involve a translation relation that associates a natural language expression with
its intension instead of its extension at a given world.
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lated into Ty2 using expressions that contain a free variable for
the evaluation world. The world of evaluation is represented by
the variable w0, also notated as ẇ . This is a variable rather than
a constant, so a given Ty2 translation α that makes reference to ẇ
may have a different semantic value JαKM ,g depending on what
the assignment function g assigns to ẇ . The intension of a natural
language expression can then be represented simply by prepend-
ing λẇ to the representation for its extension.

13.4.4.1 Lexicon

Common nouns. A common noun like drummer or unicorn has
a translation of type ⟨e, t⟩, with the world slot of the corresponding
⟨s,et⟩ predicate saturated by the distinguished evaluation world
variable ẇ :

(30) drummer↝λx .drummerẇ(x) ⟨e, t⟩
(31) unicorn↝λx .unicornẇ(x) ⟨e, t⟩

Names. A name like Miss America can in principle have different
values depending on the world of evaluation (and is temporally
variable too, but let us set that aside). Let us therefore represent
its meaning with a constantma of type ⟨s,e⟩, which yields a partic-
ular individual given a world. Since maẇ is an expression of type
e, it denotes an individual.

(32) Miss America↝maẇ e

For ordinary proper names like Leo and Mariel, we may wish
to treat them as rigid designators as Kripke (1980) proposed, pick-
ing out an individual directly, regardless of the world of evalua-
tion. One way of doing this is to translate a name like Mariel with
a constant of type ⟨s,e⟩, just like Miss America. Then our lexical
entry for Mariel might look like this:
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(33) Mariel↝mẇ e
(where m is a constant of type ⟨s,e⟩)

We may assume further thatmhas as its intension a constant func-
tion on worlds, giving the same output regardless of the input.

A more syntactic way to enforce the idea that Mariel is a rigid
designator is to specify its extension with a constant of type e:

(34) Mariel↝m e
(where m is a constant of type e)

Since the latter approach involves writing fewer symbols, we will
adopt it, even though it does take us one tiptoe step outside the
strict boundaries of Gallin’s translation from IL to Ty2.

Determiners. In our move to Ty2 we do not change the trans-
lations of logical words such as quantificational determiners. For
example, every has a translation of type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩, as usual:

(35) every↝λPetλQet∀x[P(x)→Q(x)] ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩

Its denotation is not sensitive to the evaluation world. This reflects
the view that it is a logical word of English, rather than a content
word.

Modals. To a first approximation, an intensional adverb like nec-
essarily can be represented using universal quantification over worlds,
and possibly using existential quantification.

(36) necessarily↝λpst .∀w ′ . p(w ′) ⟨st , t⟩
(37) possibly↝λpst .∃w ′ . p(w ′) ⟨st , t⟩

But this treatment ignores modal flavor.
To capture modal flavor, one can restrict the set of worlds that

are being quantified over. One mechanism for restricting the set
of worlds that are quantified over is an ACCESSIBILITY RELATION
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among possible worlds, an idea from modal logic. An accessibil-
ity relation specifies for each world, which other worlds are ac-
cessible to it. An accessiblity relation is a binary relation among
worlds, a set of pairs ⟨w, w ′⟩ such that w ′ is accessible from w .
In our earlier discussion of modal logic, we omitted the distinc-
tion between accessible worlds and inaccessible worlds, but the
◻ and ◇ operators are usually defined so as to quantify only over
accessible worlds:

• ◻φ is true at a given world w if and only if for all worlds w ′

accessible to w , φ is true at w ′.

• ◇φ is true at a given world w if and only if there is a world
w ′ accessible to w such that φ is true at w ′.

In the simplest case, there is only one accessiblity relation among
worlds, and it is transitive, symmetric, and reflexive (see Hughes
& Cresswell 1968 for a fuller introduction; von Fintel & Heim 2011
also give a helpful pedagogical discussion of these concepts). Dif-
ferent patterns of logical inference arise under different assump-
tions about the algebraic properties of the accessibility relation.

To capture modal flavor, one strategy is to adopt multiple dif-
ferent accessiblity relations. Thus a world w ′ might epistemically
accessible from w but not deontically accessible, etc. Proposi-
tional attitudes like belief and desire can be modelled using simi-
lar mechanisms, although in these cases the accessibility relation
is relativized to a particular agent.

Let us use deon.accw(w ′) to represent the idea that w ′ is de-
ontically accessible from w . To say that w ′ is deontically accessi-
ble from w is to say that w ′ is a world that is compatible with the
rules that are in place in w . Let’s assume further that necessarily
is polysemous, with different lexical entries for each flavor. Then
the deontic sense of necessarily can be written as follows:

(38) necessarilyDEON ↝λpst .∀w ′[deon.accẇ(w ′)→ p(w ′)]
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Epistemic and metaphysical necessity can be modelled in terms
of an other accessibility relations:

(39) necessarilyEPIST ↝λpst .∀w ′[epist.accẇ(w ′)→ p(w ′)]
(40) necessarilyMETA ↝λpst .∀w ′[meta.accẇ(w ′)→ p(w ′)]

The corresponding senses of possibly would be analogous, using
existential instead of universal quantification, for example:

(41) possiblyMETA ↝λpst .∃w ′[meta.accẇ(w ′)→ p(w ′)]

We will abbreviate∃w ′[meta.accw(w ′)→ p(w ′)] as poss.metaw(p).
Likewise,∀w ′[meta.accw(w ′)→ p(w ′)] is short for neg.metaw(p).
Mutatis mutandis for the other flavors.

One fact that this treatment leaves out is the context-sensitive
nature of modals. The modal verb have to is unambiguously de-
ontic in flavor, but still, the relevant set of rules in question may
differ from context to context. In some cases, the speaker might
be talking about what is legal according to the rules of the local
country; in others, it might be rules of the house that are in ques-
tion. To accommodate this fact, we could represent the meaning
of a sentence involving have to using a free variable that can get
its value from context. This variable will specify, for a given world,
which (other) possible worlds conform to the relevant set of rules
in force. It can therefore be modelled as a relation between possi-
ble worlds. We’ll use the variableR, of type ⟨s,⟨s, t⟩⟩, to represent
it:

(42) have to↝λp .∀w ′[Rẇ(w ′)→ p(w ′)]

The denotation of R relative to a model M and an assignment
function g depends directly on the value that g assigns toR. This
lexical entry for have to in (42) doesn’t place any constraints at all
onR, but a presupposition thatR is of a deontic nature could be
added in a system using a version of Ty2 that supports the ∂ oper-
ator.
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Propositional attitude verbs. Like modals, intensional verbs like
believe and want expect intensional inputs. In particular, these
two verbs expect type ⟨s, t⟩. The lexical entry for believes makes
reference to a non-logical constant dox, a function that specifies
for a given world and a given agent which other possible worlds
are compatible with the agent’s beliefs (cf. Hintikka 1969). The
function is called dox after the word ‘doxastic’, a Greek word mean-
ing ‘belief’; belief is a doxastic attitude. If a possible world is com-
patible with an agent’s beliefs (at a given world of evaluation), the
say that this world is DOXASTICALLY ACCESSIBLE to the agent (at
the world of evaluation). To believe a proposition p, then, is for
that proposition to hold at all of the agent’s doxastically accessi-
ble worlds.

(43) believes↝λpstλx .∀w ′[doxẇ(x, w ′)→ p(w ′)]

We abbreviate ∀w ′[doxu(α, w ′)→ p(w ′)] as belu(α, p).
Similarly, to want a proposition p is for that proposition to

hold at all of the agent’s desire worlds, designated with boul for
‘bouletic’:

(44) wants↝λpstλx .∀w ′[boulẇ(x, w ′)→ p(w ′)]

We abbreviate ∀w ′[boulu(α, w ′)→ p(w ′)] as wantu(α, p).
This concludes the exposition of our toy lexicon.

Exercise 5. The following exercise is adapted from von Fintel &
Heim (2011), p. 21. You may find the surrounding discussion in
that chapter helpful in doing this exercise.

Consider the following two alternative ways of defining the se-
mantics of believes:

(i) believes↝λpstλx .∀w ′[doxẇ(x, w ′)↔ p(w ′)]

(ii) believes↝λpstλx .∃w ′[doxẇ(x, w ′)∧p(w ′)]
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Both are very wrong. Explain why these do not adequately capture
the meaning of believe.

13.4.4.2 Composition rules

Let us turn now to composition rules. The Function Application
rule that we use in this system is exactly as before:

Composition Rule 7. Function Application (FA)
Let γ be a syntax tree whose only two subtrees are α and β (in any
order) where:

• α↝α′ where α′ has type ⟨σ,τ⟩

• β↝β′ where β′ has type σ.

Then
γ↝α′(β′)

Hence for example:

(45) every boy↝λQet∀x[boyẇ(x)→Q(x)]

For expressions whose extension at a given world depends not
only on the extensions of the parts at that world, but also on their
intensions, Heim & Kratzer (1998) proposed an additional mode
of composition that was inspired by Montague’s hat operator and
that has come to be known as Intensional Function Application.
This rule combines an intension-seeking predicate with the inten-
sion of its syntactic complement.
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Composition Rule 8. Intensional Function Application (IFA)
Let γ be a syntax tree whose only two subtrees are α and β (in any
order) where:

• α↝α′ where α′ has type ⟨⟨s,σ⟩,τ⟩

• β↝β′ where β′ has type σ.

Then
γ↝α′(λẇ .β′)

We also continue to adopt the Pronouns and Traces rule, ac-
cording to which a pronoun gets translated as a variable with the
corresponding numerical index (here we are glossing over gender
for expository purposes):

(46) shei ↝ xi

And as usual, we will use the transformation rule of Quantifier
Raising and the composition rule of Predicate Abstraction. The
composition rule of Predicate Modification comes along as well.

With these rules, we derive the representation in (48) for (47).

(47) She believes that Leo is a drummer.
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(48) belẇ(xi ,λẇ .drummerẇ(l))

xi

Shei

λx .belẇ(x,λẇ .drummerẇ(l))

λpstλx .belẇ(x, p)
believes

drummerẇ(l)

(that)

l
Leo

λx .drummerẇ(x)
is a drummer

Notice that the translation we obtain for this example involves
both a free and a bound use of the designated variable ẇ . Due
to the fact that bound variables can be re-lettered to produce an
equivalent expression via the alpha-conversion rule, the transla-
tion we obtain at the top of the tree in (48) is equivalent to:

(49) belẇ(m,λw ′ .drummerw ′(l))

(The free instance of ẇ cannot be replaced by another world vari-
able to produce an equivalent meaning, though.)

13.5 Applications

13.5.1 Substitutability and its failures

13.5.1.1 Identity statements

The tools we have developed allow us to account can be given for
the contrast between:

(50) a. RBG might not have been the first person to serve on
Harvard Law Review and Columbia Law Review

b. RBG might not have been RBG
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Let us assume that modal verb might here is a synonym of possibly
in its metaphysical sense. This gives the following translations for
the two sentences (we use firstwoman to denote the first person to
serve on Harvard Law Review and Columbia Law Review):

(51) a. poss.metaẇ(λw ′ .¬[rbg = ιx[firstwomanw ′(x)])
b. poss.metaẇ(λw ′ .¬[rbg = rbg])

In the first case, the sentence expresses metaphysical possibil-
ity with respect to a proposition whose truth depends on who is
the first woman to serve on both law reviews (and in particular
whether that individual happens to be Ruth Bader Ginzburg). In
the second case, the sentence expresses the possibility of a propo-
sition that is clearly necessarily false. Hence the contrast.

Exercise 6. Give a compositional derivation for (50a) and (50b)
using the tools we have developed in this chapter and a Fregean
treatment of the definite article. You may assume that first person
to serve on the HLR and the CLR is a single word. At each node,
specify not only the translation into Ty2, but also the semantic
type and the composition rule that was used to derive it. Assume
an LF on which might combines with a complete sentence.

We also have tools for explaining the invalidity of the following
argument:

(52) Camille is Miss America.
Necessarily, Camille is Camille.

∴Necessarily, Camille is Miss America.

Translating the argument into Ty2 according to the rules we have
laid out, and treating of is as equality, gives the following:

(53) c =maẇ

nec.metaẇ(λw .c = c)
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∴ nec.metaẇ(λw .c =maw)

The use of explicit world variables in Ty2 helps to bring out where
the argument goes wrong. The first premise is a claim about a
particular world of evaluation, which can well be true but has no
bearing on who is Miss America in other worlds. The second premise
is a necessity claim that is obviously true because it concerns an
identity that doesn’t even depend on a particular world of evalu-
ation. The conclusion, on the other hand, expresses a necessity
claim about a proposition whose truth can in principle vary from
world to world. The truth of the proposition said to be necessary
depends on who Miss America is in the world, and that may or
may not be Camille.

13.5.1.2 Frege’s Puzzle

In the foregoing, we assumed that proper names like Ruth Bader
Ginzburg and Camille pick out the same individual relative to ev-
ery world, in other words, that they are rigid designators. In this
respect our treatment of proper names is not unlike the view as-
sociated with 19th century British philosopher John Stuart Mill
(‘Millianism’), where the denotation of a proper name is just its
referent, i.e. the bearer of the name, and that this is all that the
name contributes to propositions.

Frege noticed a serious difficulty with Mill’s view: statements
like Hesperus is Phosphorus and Hesperus is Hesperus are very dif-
ferent in status. According to Millianism, these two statements
denote the same proposition, namely that Venus is Venus. Frege’s
puzzle, as it is usually known, is the following. The first statement
conveys an important piece of information: it was the result of
an empirical discovery by Greek astronomers, and it would have
been news to the ancient Babylonians. The second statement, by
contrast, is entirely uninformative. How can this be, if they denote
the same proposition?

Frege’s own reaction to this puzzle was to distinguish between
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the ‘sense’ (Sinn) and ‘reference’ (Bedeutung) of an expression.
According to Frege, the words Hesperus and Phosphorus have the
same referent (namely Venus), but they have different senses. It’s
not clear exactly what a sense is, though (a ‘mode of presentation’,
he says). Another approach is to take a name like Aristotle to be
synonymous with a definite description like the teacher of Alexan-
der the Great. This approach is called ‘descriptivism’ about proper
names, because it essentially treats proper names as definite de-
scriptions in disguise. Descriptivism also has its challenges and is
not generally considered a live option.

Today, there is no consensus on the best way to solve Frege’s
puzzle. One approach is worth mentioning; it draws on two-dimensional
semantics to capture the distinction between epistemic and meta-
physical modality (Chalmers, 2006). On this approach, a proposi-
tion, and any expression within it, takes two parameters: a con-
textual parameter, corresponding to epistemic possibilities, and a
possible world, corresponding to metaphysical possibilities. Rela-
tive to a context in which “Hesperus” and “Phosphorus” are known
to have the same referent, the two noun phrases denote the same
individual as each other in every possible world. Relative to a con-
text in which “Hesperus” and “Phosphorus” are believed to have
different referents, the two noun phrases denote the same two dis-
tinct individuals in every possible world.

13.5.2 Existential import

Recall the distinction between see and want discussed above in
connection with examples (20a) Andrea sees a sloop and (20b) An-
drea wants a sloop. The former implies the existence of sloops,
while the latter does not. In his seminal work on intensional se-
mantics, Montague discussed a similar contrast between find, an
extensional verb, and seek, an intensional verb:

(54) a. Andrea found a unicorn.
b. Andrea sought a unicorn.
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Example (54a) implies that there are unicorns (54b), on one of its
readings, does not; to borrow Quine’s phraseology, it just means
that Andrea sought relief from unicornlessness. In other words,
find has existential import and that reading of seek does not.

With the tools that we now have in hand, we can model this
distinction as follows. An extensional transitive verb like finds has
a translation of type ⟨e,⟨e, t⟩⟩:

(55) finds↝λyλx .findẇ(x, y)

The translation for find a unicorn involves QR of a unicorn, giving
the LF in (56a) and the Ty2 translation in (56b)

(56) a. LF: [ a unicorn ] λ1 [ Andrea found t1 ]
b. ∃y[unicorn(y)∧findẇ(a, y)]

This derivation uses only compositional techniques that are fa-
miliar from the extensional systems from previous chapters.

Intensional verbs, on the other hand, expect intensional in-
puts; in particular, seeks expects type ⟨s,et⟩.

(57) seeks↝λP⟨s,et⟩λx .seekẇ(x,P)

Given that a unicorn is an expression of type ⟨e, t⟩, it can combine
with seek via Intensional Function Application like so:

(58) seekẇ(a,λẇλx .unicornẇ(x))

a
Andrea

λx .seekẇ(x,λẇ .λx .unicornẇ(x))

λP⟨s,et⟩λx .seekẇ(x,P)
seeks

unicornẇ(x)
a unicorn

The formula that is obtained at the top node expresses a relation
between an individual and a property. Existence of unicorns is not
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implied by that formula.

13.5.3 De dicto vs. de re

Let us now return to the question of how to represent the two
readings of She wants to dance with a drummer. Since want takes
a non-finite complement in this example, we will need to estab-
lish some assumptions about the syntax of non-finite complements.
There are a number of choices one could make here, but we will
simply assume that there is a silent pronoun PROi in the subject
position coindexed with the subject of the sentence.6 This gives:

(59) Shei wants [ PROi (to) dance with a drummer ]

Then want combines in effect with a full clause. Whether we get
a de dicto or de re reading depends on the landing site of a drum-
mer when it undergoes QR. The de dicto reading can be derived
from an LF structure where a drummer remains under the scope
of wants:

(60) She1 wants [ [a drummer] λ2 PRO1 (to) dance with t2 ]

The de re reading involves higher scope for a drummer at LF:

(61) [a drummer] λ2 she1 wants [ PRO1 (to) dance with t2 ]

Our composition rules deliver the following derivation for the
LF in (60) (dw is short for ‘dance with’):

6The example we are discussing is a case of ‘control’, as opposed to ‘raising’;
‘subject control’ in particular, since it is the subject of the sentence that ‘controls’
the interpretation of the embedded subject. See Carnie (2013) for an introduc-
tion to raising and control.
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(62) λx .wantẇ(x,λẇ .∃y[drummerẇ(y)∧dwẇ(x1, y)])

λpstλx .wantẇ(x, p)
wants

∃y[drummerẇ(y)∧dwẇ(x1, y)]

[a drummer] λ2 PROi (to) dance with t2

The translation for the full sentence is as follows:

(63) wantẇ(x1,λẇ .∃y[drummerẇ(y)∧dwẇ(x1, y)])

If we re-letter the bound instance of ẇ to w ′, then the derived
truth conditions can be paraphrased as: ‘In the world of evalua-
tion (= ẇ), she (= x1) stands in the ‘want’ relation to the proposi-
tion that holds in any world w ′ such that there is a drummer in
w ′ that she (= x1) dances with in w ′.’ That is to say, she wants the
proposition denoted by the sentence “She dances with a drum-
mer” to be true.

The truth of the statement in (63) depends on a model and an
assignment function. Whether or not it is true relative to model
M and assignment function g depends in particular on what g
assigns to both x1 and ẇ . If g assigns x1 to Mariel and ẇ to w0,
and according to M , w0 is as described in Table 13.1, then this
formula will be true relative to M and g .

Exercise 7. Which reading of She wants to dance with a drummer
is represented by (63): de re or de dicto (or neither)?

Exercise 8. Using an appropriate LF, give a compositional deriva-
tion for the other reading of She wants to dance with a drummer,
specifying which reading it is (de re or de dicto), and give an exam-
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ple of an assignment function relative to which it would be true
given the model described in Table 13.1.

13.6 Summary

In this chapter we have developed a compositional intensional se-
mantics using Ty2 as a representation language. We have illus-
trated how it can be used to capture basic inference patterns in-
volving strong and weak modals of various flavors, how it can be
used to block inferences of existential import, and how it can be
used to represent de dicto vs. de re ambiguities. For a book-length
presentation of intensional semantics, we recommend von Fintel
& Heim (2011).
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